

How to Uniquely Identify QuickUSB Devices

January 19, 2012 - v1.0 AN104

Bitwise Systems Page 1 of 5

Overview

Often times software will need to be able to distinguish between two QuickUSB Devices. When

QuickUSB devices are connected to a computer, the QuickUSB Driver and Library assign each device a

unique name such as ‘QUSB-0’ and ‘QUSB-1’, but these names do not reveal any information unique to

each device. If the devices are connected to the computer in the reverse order then their names flip.

This application note describes how you can acquire information about QuickUSB devices that is unique

to each device so that your software may always know which QuickUSB to communicate with when

multiple devices are connected to a computer. Additionally, this application note shows how you can

retrieve specific information about the capabilities of the connected device.

Serial Number

The easiest way to distinguish multiple QuickUSB devices is to read out their serial numbers. Every

QuickUSB device has a serial number, and if you are using a QuickUSB Module or have configured

your hardware with iChipPack licenses then your device has been assigned a globally unique serial

number. This serial number may be changed using the QuickUSB Customizer.

Reading the serial number from all connected devices is quite simple. First you call

QuickUsbFindModules() to get a list of all QuickUSB devices currently connected to the system. Next,

you loop through each device, open it, read out its serial number, and then close it. You may see an

example of how to do this under the Reading Serial Numbers section of this document.

Custom EEPROM Data

Using only serial numbers to distinguish between QuickUSB devices has its limits. For example, if you

release multiple revisions or variants of a product that uses QuickUSB, or even multiple products that

use QuickUSB, then how can your software determine what QuickUSB product it is communicating

with, its hardware revision, and the devices capabilities? The answer is to use EEPROM memory in

QuickUSB to store information about your product. Every QuickUSB device, whether it is a QuickUSB

Module or a custom design that incorporates the QuickUSB circuit, has an EEPROM that stores the

QuickUSB firmware. The upper 2 KB of that EEPROM are reserved for user storage and are accessible

with the QuickUSB Storage API functions QuickUsbReadStorage() and QuickUsbWriteStorage().

To uniquely identify information about your product you must first design a memory structure that

contains information about any type of product you may design and its capabilities. Useful information

could include a product ID, a revision number, and hardware capability information. You then store this

information in the EEPROM of each QuickUSB product you design. Then, identifying products in

software is easy. First, you must call QuickUsbFindModules() to get a list of all QuickUSB devices

currently connected to the system. Next, you loop through each device, open it, read out the product

information memory structure from the EEPROM, and parse it for relevant information about the

product. Of course, when you are done communicating with the device make sure to close it. You may

see an example of how to do this under the Accessing Custom EEPROM Data section of this document.

How to Uniquely Identify QuickUSB Devices

January 19, 2012 - v1.0 AN104

Bitwise Systems Page 2 of 5

Examples

Reading Serial Numbers

This C++ example demonstrates how to display the serial number of every QuickUSB device connected

to the computer.

#include "QuickUSB.h"

#include <iostream>

using namespace std;

// Main Program

int main(int argc, char **argv) {

 QCHAR nameList[1024], *name;

 QCHAR serial[32];

 QHANDLE hDevice;

 QRESULT ok;

 QULONG lastError;

 // Get a list of the connected QuickUSB devices

 ok = QuickUsbFindModules(nameList, 1024);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Loop though all devices

 name = nameList;

 do {

 // Open the device

 ok = QuickUsbOpen(&hDevice, name);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Read the device's serial number

 ok = QuickUsbGetStringDescriptor(hDevice, QUICKUSB_SERIAL, serial, 32);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Write the device information to the console

 cout << name << ": " << serial << endl;

 // Close the device

 ok = QuickUsbClose(hDevice);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Move to the next device in the list

 name += strlen(name) + 1;

 } while (*name != 0);

 // Return successfully

 return 0;

}

How to Uniquely Identify QuickUSB Devices

January 19, 2012 - v1.0 AN104

Bitwise Systems Page 3 of 5

Accessing Custom EEPROM Data

This C++ example demonstrates how one might create a product information memory structure and read

it out of the QuickUSB EEPROM to identify QuickUSB devices. Keep in mind that uninitialized or

blank EEPROM data contains the value of 0xFF, not 0x00.

In order for this code to produce meaningful results, you will have to first fill out and then write a

ProductInfo object to the EEPROM of your QuickUSB devices. This example is broken into two

portions: the first is how to write product information to the EEPROM and the second is how to retrieve

that product information.

Writing Product Information from the EEPROM

#include "QuickUSB.h"

#include <iostream>

using namespace std;

// The Product Information Memory Structure

struct ProductInfo {

 QWORD productID;

 QBYTE hardwareRev;

 QULONG capabilites;

 // ...additional information

 QBYTE checksum;

};

// Main Program

int main(int argc, char **argv) {

 QCHAR nameList[1024], *name;

 QCHAR serial[32];

 QHANDLE hDevice;

 QRESULT ok;

 QULONG lastError;

 ProductInfo info;

 // Get a list of the connected QuickUSB devices

 ok = QuickUsbFindModules(nameList, 1024);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Loop though all devices

 name = nameList;

 do {

 // Open the device

 ok = QuickUsbOpen(&hDevice, name);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Fill out the product information for this device

 info.productID = 1; // Our first product

 info.hardwareRev = 2; // Rev 2

 info.capabilites = 0; // No capabilities yet

 info.checksum = 0xAB; // For brevity we will not calculate a checksum

 // Write the device's product information

 ok = QuickUsbWriteStorage(hDevice, 0, (PQBYTE)&info, sizeof(ProductInfo));

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

How to Uniquely Identify QuickUSB Devices

January 19, 2012 - v1.0 AN104

Bitwise Systems Page 4 of 5

 }

 // Close the device

 ok = QuickUsbClose(hDevice);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Move to the next device in the list

 name += strlen(name) + 1;

 } while (*name != 0);

 // Return successfully

 return 0;

}

Reading Product Information to the EEPROM

#include "QuickUSB.h"

#include <iostream>

using namespace std;

// The Product Information Memory Structure

struct ProductInfo {

 QWORD productID;

 QBYTE hardwareRev;

 QULONG capabilites;

 // ...additional information

 QBYTE checksum;

};

// Main Program

int main(int argc, char **argv) {

 QCHAR nameList[1024], *name;

 QCHAR serial[32];

 QHANDLE hDevice;

 QRESULT ok;

 QULONG lastError;

 ProductInfo info;

 // Get a list of the connected QuickUSB devices

 ok = QuickUsbFindModules(nameList, 1024);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Loop though all devices

 name = nameList;

 do {

 // Open the device

 ok = QuickUsbOpen(&hDevice, name);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Read the device's product information

 ok = QuickUsbReadStorage(hDevice, 0, (PQBYTE)&info, sizeof(ProductInfo));

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

How to Uniquely Identify QuickUSB Devices

January 19, 2012 - v1.0 AN104

Bitwise Systems Page 5 of 5

 // Here we could verify the checksum to ensure that the memory contains

 // valid product information, but for clarity we will skip that step

 // Print out the product ID, revision, and capabilities

 cout << name << ": " << info.productID << ", " << (int)info.hardwareRev << ", " <<

info.capabilites << endl;

 // Close the device

 ok = QuickUsbClose(hDevice);

 if (!ok) {

 ok = QuickUsbGetLastError(&lastError);

 cout << "Error: " << lastError << endl;

 return 1;

 }

 // Move to the next device in the list

 name += strlen(name) + 1;

 } while (*name != 0);

 // Return successfully

 return 0;

}

Bitwise Systems
6489 Calle Real, Suite E
Goleta, CA 93117
V (805) 683-6469
F (805) 683-4833
info@bitwisesys.com

Copyright © 2012 Bitwise Systems. All rights reserved.

mailto:info@bitwisesys.com

	Overview
	Serial Number
	Custom EEPROM Data
	Examples
	Reading Serial Numbers
	Accessing Custom EEPROM Data
	Writing Product Information from the EEPROM
	Reading Product Information to the EEPROM

