
 2012-2018 Microchip Technology Inc. DS50002750A

MPLAB® XC8 C Compiler
User’s Guide for AVR® MCU

DS50002750A-page 2  2012-2018 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2012-2018, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-2969-2

MPLAB® XC8 C COMPILER
USER’S GUIDE FOR AVR® MCU
Table of Contents
Preface ... 5
Chapter 1. Compiler Overview

1.1 Introduction ... 11
1.2 Compiler Description and Documentation .. 11
1.3 Device Description ... 12

Chapter 2. XC8 Command-line Driver
2.1 Introduction ... 13
2.2 Invoking the Compiler ... 14
2.3 The Compilation Sequence .. 16
2.4 Runtime Files ... 18
2.5 Compiler Output ... 18
2.6 Compiler Messages .. 20
2.7 Option Descriptions .. 21

Chapter 3. C Language Features
3.1 Introduction ... 51
3.2 C Standard Compliance ... 51
3.3 Device-Related Features .. 52
3.4 Supported Data Types and Variables .. 55
3.5 Memory Allocation and Access .. 68
3.6 Operators and Statements ... 75
3.7 Register Usage ... 77
3.8 Functions .. 78
3.9 Interrupts .. 82
3.10 Main, Runtime Startup and Reset .. 86
3.11 Libraries .. 89
3.12 Mixing C and Assembly Code .. 90
3.13 Optimizations .. 99
3.14 Preprocessing .. 99
3.15 Linking Programs ... 104

Chapter 4. Utilities
4.1 Introduction ... 107
4.2 Librarian ... 108
4.3 Hexmate ... 109
4.4 Objdump ... 124

Appendix A. Library Functions
A.1 Introduction .. 125
 2012-2018 Microchip Technology Inc. DS50002750A-page 3

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Appendix B. Implementation-Defined Behavior
B.1 Introduction .. 145
B.2 Overview .. 145
B.3 Translation ... 145
B.4 Environment ... 146
B.5 Identifiers ... 146
B.6 Characters ... 147
B.7 Integers .. 148
B.8 Floating-Point ... 149
B.9 Arrays and Pointers ... 150
B.10 Hints ... 150
B.11 Structures, Unions, Enumerations, and Bit-Fields 150
B.12 Qualifiers .. 151
B.13 Pre-Processing Directives .. 151
B.14 Library Functions ... 152
B.15 Architecture .. 155

Glossary ...157
Index ...177
Worldwide Sales and Service ...183
DS50002750A-page 4  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR

Preface
INTRODUCTION
This chapter contains general information that will be useful to know before using the
MPLAB® XC8 C Compiler User’s Guide. Items discussed in this chapter include:
• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support
• Document Revision History

DOCUMENT LAYOUT
The MPLAB XC8 C Compiler User’s Guide is organized as follows:
• Chapter 1. Compiler Overview
• Chapter 2. XC8 Command-line Driver
• Chapter 3. C Language Features
• Chapter 4. Utilities
• Appendix A. Library Functions
• Appendix B. Implementation-Defined Behavior
• Glossary
• Index

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions can differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.
Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.
For the most up-to-date information on development tools, see the MPLAB® IDE online help.
Select the Help menu, and then Topics to open a list of available online help files.
 2012-2018 Microchip Technology Inc. DS50002750A-page 5

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
CONVENTIONS USED IN THIS GUIDE
This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

N‘Rnnnn A number in verilog format,
where N is the total number of
digits, R is the radix and n is a
digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier New font:
Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

DS50002750A-page 6  2012-2018 Microchip Technology Inc.

Preface
RECOMMENDED READING
This user’s guide describes how to use MPLAB XC8 C Compiler. Other useful docu-
ments are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.
Readme for MPLAB XC8 C Compiler
For the latest information on using MPLAB XC8 C Compiler, read MPLAB® XC8 C
Compiler Release Notes (an HTML file) in the Docs subdirectory of the compiler’s
installation directory. The release notes contain update information and known issues
that cannot be included in this user’s guide.
Readme Files
For the latest information on using other tools, read the tool-specific Readme files in
the Readmes subdirectory of the MPLAB IDE installation directory. The Readme files
contain update information and known issues that cannot be included in this user’s
guide.

THE MICROCHIP WEB SITE
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:
• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives
 2012-2018 Microchip Technology Inc. DS50002750A-page 7

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE
Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata that are related to a specified product family or
development tool of interest.
To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.
The Development Systems product group categories are:
• Compilers – The latest information on Microchip C compilers, assemblers, linkers

and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3
debug express.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB
ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included
are non production development programmers such as PICSTART® Plus and
PICkit 2 and 3.

CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the web site at:
http://www.microchip.com/support
DS50002750A-page 8  2012-2018 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com/support

Preface
DOCUMENT REVISION HISTORY

Revision A (April 2018)
Initial release of this document, adapted from the MPLAB XC8 C Compiler User’s
Guide, DS50002053.
 2012-2018 Microchip Technology Inc. DS50002750A-page 9

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
NOTES:
DS50002750A-page 10  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR MCU

Chapter 1. Compiler Overview
1.1 INTRODUCTION
This chapter is an overview of the MPLAB® XC8 C Compiler for AVR devices, including
these topics.
• Compiler Description and Documentation
• Device Description

1.2 COMPILER DESCRIPTION AND DOCUMENTATION
The MPLAB XC8 C Compiler is a free-standing, optimizing ISO C99 compiler. It sup-
ports all 8-bit PIC® and AVR microcontrollers; however, this document describes how
to use the compiler when targeting Microchip AVR devices. See the MPLAB® XC8 C
Compiler User’s Guide for PIC® MCU for information on using this compiler when tar-
geting Microchip PIC devices.

The compiler is available for several popular operating systems, including Professional
editions of Microsoft Windows 7 (32/64 bit), Windows 8 (64 bit), and Windows 10 (64
bit); Ubuntu 16.04 (32/64 bit); Fedora 23 (64 bit) or Mac OS X 10.12 (64 bit).
The compiler is available in two operating modes: Free or PRO. The PRO operating
mode is a licensed mode and requires an activation key to enable it. Free mode is avail-
able for unlicensed customers. The basic compiler operation, supported devices and
available memory are identical across all modes. The modes only differ in the level of
optimization employed by the compiler.

1.2.1 Conventions
Throughout this manual, the term “compiler” is used. It can refer to all, or a subset of
the collection of applications that comprise the MPLAB XC8 C Compiler. When it is not
important to identify which application performed an action, it will be attributed to “the
compiler.”
In a similar manner, “compiler” is often used to refer to the command-line driver;
although specifically, the driver for the MPLAB XC8 C Compiler package is named
xc8-cc (as discussed in Section 2.7 “Option Descriptions”). Accordingly, “compiler
options” commonly refers to command-line driver options.
In a similar fashion, “compilation” refers to all or a selection of steps involved in
generating an executable binary image from source code.

Note: Features described as being part of MPLAB XC8 in this document assume
that you are using a Microchip AVR device. These features may differ if you
choose to instead compile for a Microchip PIC device.
 2012-2018 Microchip Technology Inc. DS50002750A-page 11

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
1.3 DEVICE DESCRIPTION
This compiler guide describes the MPLAB XC8 compiler’s support for all 8-bit Micro-
chip AVR devices, including tinyAVR, and AVR XMEGA devices.
The compiler takes advantage of the target device’s instruction set, addressing modes,
memory, and registers whenever possible. A summary of the device families is shown
in Table 1-1. This includes the offset of the special function registers, the address at
which general-purpose data memory starts, and the offset at which program memory
is mapping into the data space (where relevant).

TABLE 1-1: SUMMARY OF SUPPORTED DEVICE FAMILIES
Family ArchID SFR Offset Mapped Flash Address

avr1 1 0x20 n/a
avr2 2 0x20 n/a
avr25 25 0x20 n/a
avr3 3 0x20 n/a
avr31 31 0x20 n/a
avr35 35 0x20 n/a
avr4 4 0x20 n/a
avr5 5 0x20 n/a
avr51 51 0x20 n/a
avr6 6 0x20 n/a
avrtiny 100 0x0 0x4000
avrxmega2 102 0x0 n/a
avrxmega3 103 0x0 0x8000
avrxmega4 104 0x0 n/a
avrxmega5 105 0x0 n/a
avrxmega6 106 0x0 n/a
avrxmega7 107 0x0 n/a
DS50002750A-page 12  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR MCU

Chapter 2. XC8 Command-line Driver
2.1 INTRODUCTION
The name of the MPLAB XC8 command-line driver is xc8-cc. This driver can be
invoked to perform all aspects of compilation, including C code generation, assembly,
and link steps. It is the recommended way to use the compiler, as it hides the complex-
ity of all the internal applications and provides a consistent interface for all compilation
steps.
If you are building a legacy project or would prefer to use the old command-line driver
you may instead run the avr-gcc driver application and use appropriate com-
mand-line options for that driver. Those options may differ to those described in this
guide.
This chapter describes the steps that the driver takes during compilation, the files that
the driver can accept and produce, as well as the command-line options that control
the compiler’s operation.
The following topics are examined in this chapter of the MPLAB XC8 C Compiler User’s
Guide:
• Invoking the Compiler
• The Compilation Sequence
• Runtime Files
• Compiler Output
• Compiler Messages
• Option Descriptions
 2012-2018 Microchip Technology Inc. DS50002750A-page 13

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.2 INVOKING THE COMPILER
This section explains how to invoke xc8-cc on the command line, as well as the files
that it can read.

2.2.1 Driver Command-line Format
The xc8-cc driver has the following basic command format:
xc8-cc [options] files [libraries]

Throughout this manual, it is assumed that the compiler applications are in the con-
sole’s search path (see Section 2.2.2 “Driver Environment Variables”) or that the full
path is specified when executing an application.
It is customary to declare options (identified by a leading dash “-” or double dash
“--”) before the files’ names. However, this is not mandatory.
The formats of the options are supplied in Section 2.7 “Option Descriptions” along with
corresponding descriptions of the options.
The files can be an assortment of C and assembler source files, and precompiled
intermediate files. While the order in which these files are listed is not important, it can
affect the allocation of code or data, and can affect the names of some of the output
files.
Libraries is a list of user-defined library files that will be searched by the compiler,
in addition to the standard C libraries. The order of these files will determine the order
in which they are searched. It is customary to insert the Libraries list after the list of
source file names; however, this is not mandatory.
If you are building code using a make system, see Section 2.3.3 “Multi-Step Compila-
tion”.

2.2.1.1 LONG COMMAND LINES

The xc8-cc driver can be passed a command-line file containing driver options and
arguments to circumvent any operating-system-imposed limitation on command line
length.
A command file is specified by the @ symbol, which should be immediately followed
(i.e., no intermediate space character) by the name of the file containing the arguments.
Inside the file, each argument must be separated by one or more spaces and can
extend over several lines. The file can contain blank lines, which will be ignored.
The following is the content of a command file, xyz.xc8 for example, that was con-
structed in a text editor and that contains the options and the file names required to
compile a project.
-mcpu=atmega3290p -Wl,-Map=proj.map -Wa,-a=proj.lst
-O2 main.c isr.c

After this file is saved, the compiler can be invoked with the following command:
xc8-cc @xyz.xc8

Command files can be used as a simple alternative to a make file and utility, as well as
conveniently stored compiler options and source file names.
DS50002750A-page 14  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.2.2 Driver Environment Variables
No environment variables are defined or required by the compiler for it to execute.
Adjusting the PATH environment variable allows you to run the compiler driver without
having to specify the full compiler path.
This variable can be automatically updated when installing the compiler by selecting
the Add xc8 to the path environment variable checkbox in the appropriate dialog.
Note that the directories specified by the PATH variable are only used to locate the com-
piler driver. Once the driver is running, it will manage access to the internal compiler
applications, such as the assembler and linker, etc.
The MPLAB X IDE allows the compiler to be selected via the Project properties dialog
without the need for the PATH variable.

2.2.3 Input File Types
The xc8-cc driver accepts a number of input file types, which are distinguished by the
file’s extension, unless the -x language option (Section 2.7.2.6 “x: Specify Source Lan-
guage”) is specified. The recognized input file extensions are listed in Table 2-1.

There are no compiler restrictions imposed on the names of source files, but be aware
of case, name-length, and other restrictions that are imposed by your operating sys-
tem.
Note that the invocation of the C preprocessor will be automatic when an assembly
source file is listed on the command line using a .S extension (capital letter "S"). This
is not dependent on the operating system on which the compiler is running, since the
compiler checks the extension present on the command line, not the extension of the
source file name.
Avoid using the same base name for assembly and C source files, even if they are
located in different directories, and avoid having source files with the same basename
as the MPLAB X IDE project name.

TABLE 2-1: xc8-cc INPUT FILE TYPES
Extension File format

.c C source file

.i Preprocessed C source file

.s Assembler source file

.S or .sx Assembly source file to be preprocessed

.o Relocatable object code file
other A file to be passed to the linker
 2012-2018 Microchip Technology Inc. DS50002750A-page 15

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.3 THE COMPILATION SEQUENCE
When you compile a project, many internal applications are called to do the work. This
section looks at when these internal applications are executed and how this relates to
the build process of multiple source files. This section should be of particular interest if
you are using a make system to build projects.

2.3.1 The Compiler Applications
The main internal compiler applications and files are illustrated in Figure 2-1.
You can consider the large underlying box to represent the whole compiler, which is
controlled by the command line driver, xc8-cc. You can be satisfied just knowing that
C source files (shown on the far left) are passed to the compiler and the resulting output
files (shown here as a HEX and ELF debug file—by default called a.out—on the far
right) are produced; however, internally there are many applications and temporary
files being produced. An understanding of the internal operation of the compiler, while
not necessary, does assist with using the tool.
The driver will call the required compiler applications when required. These applica-
tions are located in the compiler’s bin directories and are shown in the diagram as the
smaller boxes inside the driver. The temporary files produced by each application can
also be seen in this diagram and are marked at the point in the compilation sequence
where they are generated. The intermediate files for C source are shaded in red. Some
of these temporary files remain after compilation has concluded. There are also driver
options to request that the compilation sequence halt after execution of a particular
application so that the output of that application remains in a file and can be examined.

FIGURE 2-1: COMPILER APPLICATIONS AND FILES

preprocessor code
generator assembler .c

.i

processed files
(modules)

assembly
files

C source
files

r

linker output
utilities

generator assembler

linker output
utilities

executable
file

.elf

debug
file

hex files

Command-line driver
.s

assembly
source

files

.orelocatable
object files

.a object
libraries

.elf

.i

preprocessed
C source

files

relocatable
object files

.sx

preprocessor

.hex

.s

.o
DS50002750A-page 16  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.3.2 Single-Step Compilation
Compilation of one or more source files can be performed in just one step using the
xc8-cc driver.
The following command will build both C source files and the assembly source file,
passing the files to the appropriate internal applications, then link the generated output
to form the final output.
xc8-cc -mcpu=at86rf401 main.c io.c mdef.s

The driver will compile all source files, regardless of whether they have changed since
the last build. Development environments (such as MPLAB® X IDE) and make utilities
must be employed to achieve incremental builds (as described in
Section 2.3.3 “Multi-Step Compilation”).
Unless otherwise specified, an ELF file (this is by default called a.out) is produced as
the final output. The intermediate files and most other temporary files are deleted after
each build, unless you use the -save-temps option (see
Section 2.7.5.3 “save-temps”). Note that if you are using the MPLAB X IDE, some gen-
erated files can be placed in a different directory to where your project source files are
located.

2.3.3 Multi-Step Compilation
A multi-step compilation method can be employed to achieve an incremental build of
your project. Make utilities take note of which source files have changed since the last
build and only rebuild these files to speed up compilation. From within MPLAB X IDE,
you can select an incremental build (Build Project icon), or fully rebuild a project (Clean
and Build Project icon).
Make utilities typically call the compiler multiple times: once for each source file to gen-
erate an intermediate file, and once to perform the second stage compilation.
The option -c (see Section 2.7.2.1 “c: Compile to Intermediate File”) is used to create
an intermediate file. The option stops compilation after the assembler has executed,
and the resulting assembly output file will have a .o extension.
The intermediate files are then specified to the driver during the second stage of com-
pilation, when they will be passed to the linker.
The first two of the following command lines build an intermediate file for each C source
file, then these intermediate files are passed to the driver again to complete the com-
pilation in the last command.
xc8-cc -mcpu=ata6289 -c main.c
xc8-cc -mcpu=ata6289 -c io.c
xc8-cc -mcpu=ata6289 main.o io.o

As with any compiler, all the files that constitute the project must be present when per-
forming the second stage of compilation, thus you cannot, for example, generate an
HEX file from only part of the project.
You might also wish to generate intermediate files to construct your own library files.
See Section 4.2 “Librarian” for more information on library creation.

2.3.4 Compilation of Assembly Source
Assembly files are compiled in a similar way to C source files. The compiler driver
knows that these files should be passed to the assembler first.
If you wish to use the C preprocessor to parser an assembly source file for preproces-
sor directives, ensure the source file uses a .S or .sx extension, for example
init.sx.
 2012-2018 Microchip Technology Inc. DS50002750A-page 17

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.4 RUNTIME FILES
In addition to the C and assembly source files specified on the command line, there are
also pre-compiled library and object files that the compiler can link into your project.
These files are discussed in the following sections.

2.4.1 Library Files
The names of the C standard library files appropriate for the selected target device are
determined by the driver and automatically passed to the linker. You do not need to
manually include the compiler-supplied library files into your project.
The standard libraries, such as libc.a are found in the avr/avr/lib directory. Emu-
lation routines for operations not natively supported in hardware are part of libgcc.a,
found in avr/lib/gcc/avr/. The libm.a math library is also automatically linked
in, as is libdevicename.a (e.g. libatxmega128b1.a) that contains device-spe-
cific routines for working with watch dog timers, power management, eeprom access,
etc., (see Section 3.11 “Libraries” for more information).

2.4.2 Startup and Initialization
Pre-built object files, which contain the runtime startup code, are provided with the com-
piler. Section 3.10.2 “Runtime Startup Code” details the specific actions taken by this
code and how it interacts with programs you write.
The runtime startup code is executed before main. However, if you require any special
initialization to be performed immediately after Reset, you should write a powerup ini-
tialization routine (described later in Section 3.10.3 “The Powerup Routine”).

2.5 COMPILER OUTPUT
There are many files created by the compiler during the compilation. A large number of
these are temporary files. Many are deleted after compilation is complete, but some
remain and are used for programming the device, or for debugging purposes.

2.5.1 Output Files
The default behavior of xc8-cc is to produce an ELF file called a.out file.
The name of the output file can be changed using the -o option (see Section 2.7.2.3 “o:
Specify Output File”). Compiler options can alter the compilation process and generate
different output file types. The common output file types are shown inTable 2-2.

A HEX file must be created by calling the avr-objcopy application. This application
is automatically called when you are using MPLAB X IDE, once to generate the main
output, and again to generate the HEX file for EEPROM data.
The ELF file is used by debuggers to obtain debugging information about the project.

Note: Throughout this manual, the term project name will refer to the name of the
project created in the IDE.

TABLE 2-2: COMMON OUTPUT FILES
Extension Format and method of creation

.hex Intel HEX file, produced by execution of avr-objcopy
a.out, .elf ELF/Dwarf, generated by default
.o Relocatable object (intermediate) file, produced by-c
.s Assembly file, produced by -S
.i Preprocessed C file, produced by -E
DS50002750A-page 18  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.5.2 Diagnostic Files
Two valuable files produced by the compiler are the assembly list file generated by the
assembler and the map file generated by the linker. They are output by options, shown
in Table 2-3.

See Section 4.4 “Objdump” for more information on generating these files.

TABLE 2-3: DIAGNOSTIC FILES
File format Type and option used

file.lst Assembly list file, produced by -Wa,-a=file.lst
file.map Map file, produced by -Wl,-Map=file.map
 2012-2018 Microchip Technology Inc. DS50002750A-page 19

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.6 COMPILER MESSAGES
All compiler applications, including the command-line driver, xc8-cc, use textual mes-
sages to report feedback during the compilation process.

2.6.1 Message Type
There are three types of messages (described below). The behavior of the compiler
when encountering a message of each type is also listed.

2.6.2 Changing Message Behavior
The attributes of individual messages can be modified during compilation using com-
piler options.

2.6.2.1 DISABLING MESSAGES

By default, the compiler can issue a variety of warnings. All warning messages can be
disabled by using -w option.
You can explicitly turn off warnings by using the -Wno-message option, where mes-
sage relates to the warning type, for example -Wno-return-type. When a warning
is produced by the compiler, it prints in square brackets the associated warning option
that controls this warning. For example, if the compiler issues the warning:
avr.c:13:1: warning: 'keep' attribute directive ignored [-Wattributes]

you can disable this warning using the option -Wno-attributes.

You can enable a more complete set of warning messages about questionable con-
structions by using -Wall. The -Wextra option turns on additional messages. Alter-
natively, you can enable individual messages using the -Wmessage option, for
example -Wunused-function (see Section 2.7.4 “Options for Controlling Warnings
and Errors”).

2.6.2.2 CHANGING MESSAGE TYPES

It is also possible to change the type of some messages. Warnings can be turned into
errors by using the -Werror option. Errors can be turned into fatal errors by using the
-Wfatal-errors option.

Warning Messages Indicates source code or some other situation that can be
compiled, but is unusual and may lead to runtime failures of
the code. The code or situation that triggered the warning
should be investigated; however, compilation of the current
module will continue, as will compilation of any remaining
modules.

Error Messages Indicates source code that is illegal or that compilation of
this code cannot take place. Compilation will be attempted
for the remaining source code in the current module, but no
additional modules will be compiled and the compilation
process will then conclude.

Fatal Error Messages Indicates a situation in which the compilation cannot pro-
ceed and requires that the compilation process to stop
immediately.

Note: Disabling warning messages in no way fixes the condition that triggered the
message. Always use extreme caution when exercising these options.
DS50002750A-page 20  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7 OPTION DESCRIPTIONS
Most aspects of the compilation can be controlled using the command-line driver,
xc8-cc. The driver will configure and execute all required applications, such as the
code generator, assembler and linker.
It is recommended, especially for options that control optimizations or other code gen-
eration aspects of the compiler, that you limit your use to only those options described
in this user’s guide, even if the options are described in the generic GCC documenta-
tion. Not all GCC options have been implemented or may not have been tested. In addi-
tion, some options use alternate forms to be compatible with other Microchip MPLAB
XC compilers, for example the -mcpu option should be used in preference to the
-mmcu GCC option, making this aspect of compilation for AVR devices compatible with
other Microchip compilers.
All options are identified by single or double leading dash character, e.g. -c or
--version. The options are case sensitive.
See the –-help option, Section 2.7.2.8 “Help”, for a brief description of accepted
options.
If you are compiling from within the MPLAB X IDE, it will by default, issue explicit
options to the compiler (unless changed in the Project Properties dialog) and these
options can be different to those that are the default on the command line.
If you are compiling the same project from the command line and from the MPLAB X
IDE, always check that you explicitly specify each option.
The following categories of options are described.
• Options Specific to AVR Devices
• Options for Controlling the Kind of Output
• Options for Controlling the C Dialect
• Options for Controlling Warnings and Errors
• Options for Debugging
• Options for Controlling Optimization
• Options for Controlling the Preprocessor
• Options for Assembling
• Options for Linking
• Options for Directory Search
• Options for Code Generation Conventions
 2012-2018 Microchip Technology Inc. DS50002750A-page 21

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.1 Options Specific to AVR Devices
The options shown in Table 2-4 are useful when compiling for 8-bit Microchip AVR
devices with the MPLAB XC8 compiler and are discussed in the sections that follow.

2.7.1.1 ACCUMULATE-ARGS

The -maccumulate-args option prevents function arguments from being pushed
onto and popped off the stack, instead producing code that adjusts the stack pointer
once at the beginning of the calling function. This option has no effect when functions
that do not use the stack for arguments are called, but for other functions, it can reduce
code size if those functions are called several times.

2.7.1.2 CALL-PROLOGUES

The -mcall-prologues option changes how functions save registers on entry and
how those registers are restored on function exit.
If this option is not used or the -mno-call-prologues options is used, the registers
that need to be preserved by each function will be saved and restored by code inside
those functions. If the -mcall-prologues option is used, this preservation code is
extracted as subroutines that are called at the appropriate points in the function.
Use of this option can reduce code size, but can increase the code’s execution time.

TABLE 2-4: AVR DEVICE-SPECIFIC OPTIONS
Option Controls

-m[no-]accumulate-args How arguments are passed between functions

-m[no-]call-prologues How functions save and restore registers
-mcpu=device The target device or architecture for which to compile

-mno-interrupts How the stack pointer is changed

-fno-jump-tables Whether jump tables are used in switch() statements

-mrelax Optimization of call/jump instructions

-mshort-calls How function calls are encoded

-mstrict-X The use of the X register

-mtiny-stack The width of the stack pointer
DS50002750A-page 22  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.1.3 CPU

The -mcpu option should be used to specify the target device or at least a target archi-
tecture family. The available architecture families are shown in Table 2-5.

For example:
xc8-cc -mcpu=atmega161 main.c

2.7.1.4 NO-INTERRUPTS

The -mno-interrupts option controls whether interrupts should be disabled when
the stack pointer is changed.
For most devices, the state of the status register, SREG, is saved in a temporary reg-
ister, and interrupts are disabled before the stack pointer is adjusted. The status regis-
ter is then restored after the stack pointer has been changed.
If a program does not use interrupts, there is no need for the stack adjustments to be
protected in this way. Use of this option omits the code that disables and potentially
re-enables interrupts around the code the adjusts the stack pointer, thus reducing code
size and execution time.
Since the AVR XMEGA devices and devices with an 8-bit stack pointer can change the
value held by the stack pointer atomically, this option is not required and has no effect
when compiling for one of these devices.
Specifying this option will define the preprocessor macro __NO_INTERRUPTS__ to the
value 1.

2.7.1.5 NO-JUMP-TABLES

See Section 3.6.3 “Switch Statements” for details regarding the -mno-jump-tables
option.

TABLE 2-5: SELECTABLE ARCHITECTURE FAMILIES
Architecture Architecture Features

avr1 Simple core, no data RAM, assembly support only
avr2 Classic core, up to 8kB program memory
avr25 avr2 with MOVW and LPM Rx,Z[+] instructions
avr3 Classic core with up to 64kB extended program memory
avr31 Classic core with 128kB of program memory
avr35 avr3 with MOVW and LPM Rx,Z[+] instructions
avr4 Enhanced core up to 8kB program memory
avr5 Enhanced core up to 64kB program memory
avr51 Enhanced core 128kB program memory
avr6 Enhanced core 256kB program memory
avrxmega2 XMEGA core, up to 64kB program memory, up to 64kB data address space
avrxmega3 xmega2 devices with program memory mapped in data address space
avrxmega4 XMEGA core, up to 128kB program memory, up to 64kB data address space
avrxmega5 XMEGA core, up to 128kB program memory, greater than 64kB data address

space
avrxmega6 XMEGA core, greater than 128 kB program memory, up to 64kB data

address space
avrxmega7 XMEGA core, greater than 128 kB program memory, greater than 64kB data

address space
avrtiny AVR Tiny core, 16 registers
 2012-2018 Microchip Technology Inc. DS50002750A-page 23

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.1.6 RELAX

The -mrelax option controls the optimization of the long form of call and jump instruc-
tions, which are always output by the code generator into shorter and/or faster relative
calls and jumps at link-time. These changes can only take place if the relative forms of
the instructions can be determined to be in range of their destination (for more informa-
tion see Section 3.4.6.3 “Function Pointers”).

2.7.1.7 SHORT-CALLS

The -mshort-call option controls how calls are encoded.
When building for devices which have more then 8kB of program memory, the compiler
will automatically use the longer form of the jump and call instructions when program
execution is leaving the current function. Doing so allows program execution to reach
the entire memory space, but the program will be larger and take longer to execute. The
-mshort-calls option will force calls to use PC-relative instructions such as the
rjmp and rcall instructions, which have a limited destination range. This option has
no effect on indirect jumps or calls made via function pointers.
Use this option with caution, as your code might fail if functions fall out of range of the
shorter instructions. See the -mrelax option (Section 2.7.1.6 “relax”) to allow function
pointers to be encoded as 16-bits wide, even on large memory device. This option has
no effect for the avr2 and avr4 architectures, which have less than 8kB of program
memory and which always use the shorter form of the call/jump instructions.

2.7.1.8 STRICT-X

The -mstrict-X option ensures that the X register (r26-r27) is only used in indirect,
post-increment or pre-decrement addressing. This restricts the register’s usage, which
could be beneficial in terms of code size.

2.7.1.9 TINY-STACK

The -mtiny-stack option controls the width of the stack pointer.
On some devices that have a small amount of data RAM, the stack pointer is only 8-bits
wide. For other devices, it is 16-bits wide and occasionally each byte might need to be
accessed separately to change where the stack pointer points.
If your devices uses a 16-bit stack pointer and the stack is located in the lower half of
memory and is smaller than 256 bytes in size, this option will force the stack pointer to
use only a single byte, thus reducing the amount of code necessary to adjust the stack
pointer.
The option is automatically applied if the device RAM totals 256 bytes or less.
DS50002750A-page 24  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.2 Options for Controlling the Kind of Output
The options shown in Table 2-6 control the kind of output produced by the compiler and
are discussed in the sections that follow.

2.7.2.1 C: COMPILE TO INTERMEDIATE FILE

The -c option is used to halt compilation after executing the assembler, leaving a relo-
catable object intermediate file with a .o extension as the output.
It is frequently used when building using a make utility. See Section 2.3.3 “Multi-Step
Compilation” for more information on generating and using intermediate files.

2.7.2.2 E: PREPROCESS ONLY

The -E option is used to generate preprocessed C source files (also called modules or
translation units).
When the -E option is used, the compilation sequence will terminate after the prepro-
cessing stage. The preprocessed output is printed to stdout, but you can use the -o
option to redirect this to a file.
You might check the preprocessed source files to ensure that preprocessor macros
have expanded to what you think they should. The option can also be used to create C
source files that do not require any separate header files. This is useful when sending
files to a colleague or to obtain technical support without sending all the header files,
which can reside in many directories.

2.7.2.3 O: SPECIFY OUTPUT FILE

The -o option specifies the name and directory of the output file.
The option -o main.elf, for example, will place the compiler output in a file called
main.elf, rather than the default file called a.out. The name of an existing directory
can be specified with the file name, for example -o build/main.elf, so that the file
will appear in that directory.

2.7.2.4 S: COMPILE TO ASSEMBLY

The -S option stops compilation after generating an assembly output file.
The command:
xc8-cc -mcpu=atxmega32d4 -S test.c io.c

will produce two assembly file called test.s and io.s, which contain the assembly
code generated from their corresponding source files.

TABLE 2-6: KIND-OF-OUTPUT CONTROL OPTIONS
Option Produces

-c An intermediate file
-E A preprocessed file
-o file An output file with the specified name
-S An assembly file
-v Verbose compilation
-x language Output after preprocessing all source files
-### Command lines but with no execution of the compiler applications
--help Help information only
--version Compiler version information
 2012-2018 Microchip Technology Inc. DS50002750A-page 25

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
This option might be useful for checking assembly code output by the compiler without
the distraction of line number and opcode information that will be present in an assem-
bly list file produced by the -Wa,-a option (see Section 2.7.9 “Mapped Assembler
Options”).

2.7.2.5 V: VERBOSE COMPILATION

The -v option specifies verbose compilation.
When this option is used, the name and path of the executed compiler applications
(described in Section 2.3 “The Compilation Sequence”), will be displayed, followed by
the command-line arguments to this application, for example:
c:/program
files/atmel/studio/7.0/toolchain/avr8/avr8-gnu-toolchain/bin/../libexe
c/gcc/avr/5.4.0/cc1.exe -quiet -v -imultilib avr6 -iprefix c:\program
files\atmel\studio\7.0\toolchain\avr8\avr8-gnu-toolchain\bin\../lib/gc
c/avr/5.4.0/ avr2.c -mn-flash=4 -mno-skip-bug -quiet -dumpbase avr2.c
-mmcu=avr6 -auxbase avr2 -version -o avr2.s

2.7.2.6 X: SPECIFY SOURCE LANGUAGE

The -x language option specifies the language for the following sources files.
The compiler usually uses the extension of an input file to determine the file’s content.
This option allows you to have the language of a file explicitly stated. The option
remains in force until the next -x option, or the -x none option, which turns off the
language specification entirely for subsequent files. The allowable languages are
shown in Table 2-7.

The -x assembler-with-cpp language option ensures assembly source files are
preprocessed before they are assembled, thus allowing the use of preprocessor direc-
tives, such as #include, and C-style comments with assembly code. By default,
assembly files not using a .S or .sx extension are not preprocessed.
You can create precompiled header files with this option, for example:
xc8-cc -mmcu=atxmega32d4 -x c-header init.h

will create the precompiled header called init.h.gch.

2.7.2.7 ###

The -### option is similar to -v, but the commands are not executed. This option
allows you to see the compiler’s command lines without executing the compiler.

2.7.2.8 HELP

The --help option displays information on the xc8-cc compiler options, then the
driver will terminate.

2.7.2.9 VERSION

The --version option prints compiler version information then exits.

TABLE 2-7: SOURCE FILE LANGUAGE
Language File language

assembler Assembly source
assembler-with-cpp Assembly with C preprocessor directives
c C source
cpp-output Preprocessed C source
c-header C header file
none Based entirely on the file’s extension
DS50002750A-page 26  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.3 Options for Controlling the C Dialect
The options shown in Table 2-8 define the type of C dialect used by the compiler and
are discussed in the sections that follow.

2.7.3.1 ANSI

The -ansi option ensures C program strictly conform to the C90 standard.
When specified, this option turns off certain GCC language extensions when compiling
C source, such as C++ style comments, keywords such as asm and inline. The
macro __STRICT_ANSI__ is defined when this option is in use. See also
-Wpedantic for information on ensuring strict ISO compliance.

2.7.3.2 AUX-INFO

The -aux-info option generates function prototypes from a C module.
The -aux-info main.pro option, for example, prints to main.pro prototyped dec-
larations for all functions declared and/or defined in the module being compiled, includ-
ing those in header files. Only one source file can be specified on the command line
when using this option so that the output file is not overwritten. This option is silently
ignored in any language other than C.
Besides declarations, the file indicates, in comments, the origin of each declaration
(source file and line), whether the declaration was implicit, prototyped or unprototyped
(I, N for new or O for old, respectively, in the first character after the line number and
the colon), and whether it came from a declaration or a definition (C or F, respectively,
in the following character). In the case of function definitions, a K&R-style list of argu-
ments followed by their declarations is also provided, inside comments, after the dec-
laration.
For example, compiling with the command:
xc8-cc -mmcu=atmega8a -aux-info test.pro test.c

might produce test.pro containing the following declarations, which can then be
edited as necessary:
/* test.c:2:NC */ extern int add (int, int);
/* test.c:7:NF */ extern int rv (int a); /* (a) int a; */
/* test.c:20:NF */ extern int main (void); /* () */

TABLE 2-8: C DIALECT CONTROL OPTIONS
Option Controls

-ansi Strict ANSI conformance
-aux-info filename The generation of function prototypes
-fno-asm Keyword recognition
-fno-builtin
-fno-builtin-function

Use of built-in functions

-f[no-]signed-char
-f[no-]unsigned-char

The signedness of a plain char type.

-f[no-]signed-bitfields
-f[no-]unsigned-bitfields

The signedness of a plain int bit-field.

-mext=extension Which language extensions is in effect
-std=standard The C language standard
 2012-2018 Microchip Technology Inc. DS50002750A-page 27

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.3.3 NO-ASM

The -fno-asm option restricts the recognition of certain keywords, freeing them to be
used as identifiers.
When used, this option ensures that asm, inline and typeof are not recognized as
keywords. You can, instead, use the keywords __asm__, __inline__ and
__typeof__.
The -ansi option implies -fno-asm.

2.7.3.4 NO-BUILTIN

The -fno-builtin option will prevent the compiler from producing special code for
built-in functions that do not begin with __builtin_ as prefix.
Normally special code that avoids a function call is produced for many built-in functions.
The resulting code is often both smaller and faster, but since the function calls no longer
appear as such, you cannot set a breakpoint on those calls, nor can you change the
behavior of the functions by linking with a different library.
The -fno-builtin-function form of this option allows you to prevent a built-in ver-
sion of the named function from being used. In this case, function must not begin
with __builtin_.

2.7.3.5 SIGNED-CHAR/UNSIGNED-CHAR

The -fsigned-char and -funsigned-char options enforce the signedness of a
plain char type.
By default, the plain char type is equivalent to signed char, unless the -mext=cci
option has been used, in which case it is equivalent to unsigned char. These options
specify the type that will be used by the compiler for plain char types. Using the
-funsigned-char or the -fno-signed-char option forces a plain char to be
unsigned, and the -fsigned-char or the -fno-unsigned-char option forces a
plain char to be signed.
Consider explicitly stating the signedness of objects when they are defined, rather than
relying on the type assigned to a plain char type by the compiler.

2.7.3.6 SIGNED-BITFIELDS/UNSIGNED-BITFIELDS

The -fsigned-bitfield and -funsigned-bitfield options control the signed-
ness of a plain int bit-field type.
By default, the plain int type, when used as the type of a bit-field, is equivalent to
signed int. These options specify the type that will be used by the compiler for plain
int bit-fields. Using the -funsigned-bitfield or the -fno-signed-bitfield
option forces a plain int to be unsigned, and the -fsigned-bitfield or the
-fno-unsigned-bitfield option forces a plain int to be signed.
Consider explicitly stating the signedness of bit-fields when they are defined, rather
than relying on the type assigned to a plain int bit-field type.

2.7.3.7 EXT

The -mext=extension option controls the language extensions allowed during com-
pilation. The possible extensions arguments are shown in Table 2-9.

TABLE 2-9: ACCEPTABLE C LANGUAGE EXTENSIONS
Extension C Language Description

xc8 No extensions (default)
cci A common C interface acceptable by all MPLAB XC compilers
DS50002750A-page 28  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
Enabling the cci extension requests the compiler to check all source code and com-
piler options for compliance with the Common C Interface (CCI). Code that complies
with this interface can be more easily ported across all MPLAB XC compilers. Code or
options that do not conform to the CCI will be flagged by compiler warnings.

2.7.3.8 STD

The --std=standard option specifies the C standard with which the compiler and C
source code should conform when compiling. The allowable standards are shown in
Table 2-10.

TABLE 2-10: ACCEPTABLE C LANGUAGE STANDARDS
Standard Supports

c89 or c90 All ISO C90 programs
c99 All ISO C99 programs
 2012-2018 Microchip Technology Inc. DS50002750A-page 29

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.4 Options for Controlling Warnings and Errors
Warnings are diagnostic messages that report constructions that are not inherently
erroneous, but that are risky or suggest there may have been an error.
You can request many specific warnings with options beginning -W; for example,
-Wimplicit, to request warnings on implicit declarations. Each of these specific
warning options also has a negative form beginning -Wno- to turn off warnings; for
example, -Wno-implicit. This guide lists only one of the two forms, whichever is not
the default.
The options shown in Table 2-11 control the messages produced by the compiler and
are discussed in the sections that follow.

TABLE 2-11: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS
Option Controls

-f[no-]syntax-only Checking code for syntax errors only
-pedantic Warnings demanded by strict ANSI C; rejects all pro-

grams that use forbidden extensions
-pedantic-errors Warnings implied by -pedantic, except that errors

are produced rather than warnings
-w Suppression of all warning messages
-W[no-]all Enablement of all warnings
-W[no-]address Warnings from suspicious use of memory addresses
-W[no-]char-subscripts Warnings from array subscripts with type char
-W[no-]comment Warnings from suspicious comments
-W[no-]div-by-zero Warnings from compile-time integer division by zero.
-Wformat Warnings from inappropriate printf() arguments
-Wimplicit Warnings implied by both -Wimplicit-int and

-Wimplicit-function-declaration

-Wimplicit-function-
 declaration

Warnings from use of undeclared function

-Wimplicit-int Warnings from declarations not specifying a type
-Wmain Warnings from unusual main definition
-Wmissing-braces Warnings from missing braces
-Wno-multichar Warnings from multi-character constant
-Wparentheses Warnings from missing precedence
-Wreturn-type Warnings from missing return type
-Wsequence-point Warnings from sequence point violations
-Wswitch Warnings from missing or extraneous case values
-Wsystem-headers Warnings from code within system headers
-Wtrigraphs Warnings from use of trigraphs
-Wuninitialized Warnings from use of uninitialized variables
-Wunknown-pragmas Warnings from use of unknown pragma
-Wunused Warnings from unused objects and constructs
-Wunused-function Warnings from unused static function
-Wunused-label Warnings from unused labels
-Wunused-parameter Warnings from unused parameter
-Wunused-variable Warnings from unused variable
-Wunused-value Warnings from unused value
DS50002750A-page 30  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.4.1 SYNTAX ONLY

The -fsyntax-only option checks the C source code for syntax errors, then terminates the
compilation.

2.7.4.2 PEDANTIC

The -pedantic option ensures that programs do not use forbidden extensions and
issues warnings when a program does not follow ISO C.

2.7.4.3 PEDANTIC-ERRORS

The -pedantic-errors option works in the same way as the -pedantic option,
only errors, instead of warnings, are issued when a program is not ISO compliant.

2.7.4.4 W: DISABLE ALL WARNINGS

The -w option inhibits all warning messages.

2.7.4.5 ALL

The -Wall option enables all the warnings about constructions that some users con-
sider questionable, and that are easy to avoid (or modify to prevent the warning), even
in conjunction with macros.
Note that some warning flags are not implied by -Wall. Some of them warn about con-
structions that users generally do not consider questionable, but which you might occa-
sionally wish to check. Others warn about constructions that are necessary or hard to
avoid in some cases and there is no simple way to modify the code to suppress the
warning. Some of them are enabled by -Wextra but many of them must be enabled
individually.

2.7.4.6 ADDRESS

The -Waddress option will generate warnings about suspicious uses of memory
addresses. These include using the address of a function in a conditional expression,
such as void func(void); if (func), and comparisons against the memory
address of a string literal, such as if (x == "abc"). Such uses typically indicate a
programmer error: the address of a function always evaluates to true, so their use in a
conditional usually indicates that the programmer forgot the parentheses in a function
call; and comparisons against string literals result in unspecified behavior and are not
portable in C, so they usually indicate that the programmer intended to use strcmp.

2.7.4.7 CHAR-SUBSCRIPTS

The -Wchar-subscripts option will warn if an array subscript has type char.

2.7.4.8 COMMENT

When using the -Wcomment option, the compiler will warn whenever a comment-start
sequence /* appears in a /* comment, or whenever a backslash-newline appears in
a comment started by // .

2.7.4.9 DIV-BY-ZERO

The -Wdiv-by-zero option explicitly requests that the compiler warn about com-
pile-time integer division by zero.To inhibit the warning messages, use
-Wno-div-by-zero. No warnings will occur for floating-point division by zero, as it
can be a legitimate way of obtaining infinities and NaNs.
 2012-2018 Microchip Technology Inc. DS50002750A-page 31

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.4.10 FORMAT

The -Wformat option checks calls to printf and scanf, etc., to make sure that the
arguments supplied have types appropriate to the format string specified.

2.7.4.11 IMPLICIT

The -Wimplicit option is equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

2.7.4.12 IMPLICIT-FUNCTION-DECLARATION

The -Wimplicit-function-declaration option will generate a warning when a
function has been used but not declared.

2.7.4.13 IMPLICIT-INT

The -Wimplicit-int option will generate a warning when a declaration does not
specify a type.

2.7.4.14 MAIN

The -Wmain option will generate a warning if the type of main() is suspicious. This
function should be a function with external linkage, returning int, and typically taking
no arguments. This option will allow you to define two or three arguments of appropriate
types.

2.7.4.15 MISSING-BRACES

The -Wmissing-braces option will warn if an aggregate or union initializer is not fully
bracketed. In the following example, the initializer for a is not fully bracketed, while b is
fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

2.7.4.16 NO-MULTICHAR

The -Wno-multichar option will generate a warning if a multi-character character
constant is used. Usually, such constants are typographical errors. Since they have
implementation-defined values, they should not be used in portable code. The following
example illustrates the use of a multi-character character constant:
char xx(void)
{
 return('xx');
}

2.7.4.17 PARENTHESES

The -Wparentheses option will generate a warning if parentheses are omitted in cer-
tain situations, such as when there is an assignment in a context where a truth value is
expected, or when operators are nested whose precedence people often find confus-
ing. For example, the following will produce a warning, due to it not realizing that the
&& operator has higher precedence.
if(a || b && c)
...
DS50002750A-page 32  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.4.18 RETURN-TYPE

The -Wreturn-type option will generate a warning whenever a function is defined
with a return-type that is not specified and that defaults to int. The option will also trig-
ger warnings about any return statement with no return value in a function whose
return-type is not void.

2.7.4.19 SEQUENCE-POINT

The -Wsequence-point option generates warnings when compiling code that may
have undefined semantics because of violations of sequence point rules in the C
standard.
The C standard defines the order in which expressions in a C program are evaluated
in terms of sequence points, which represent a partial ordering between the execution
of parts of the program: those executed before the sequence point and those executed
after it. These occur after the evaluation of a full expression (one which is not part of a
larger expression), after the evaluation of the first operand of a &&, ||, ? : or ,
(comma) operator, before a function is called (but after the evaluation of its arguments
and the expression denoting the called function), and in certain other places. Other
than as expressed by the sequence point rules, the order of evaluation of subexpres-
sions of an expression is not specified. All these rules describe only a partial order
rather than a total order. For example, if two functions are called within one expression
with no sequence point between them, the order in which the functions are called is not
specified. However, the standards committee has ruled that function calls do not over-
lap.
It is not specified when between sequence point modifications to the values of objects
take effect. Programs whose behavior depends on this have undefined behavior. The
C standard specifies that “Between the previous and next sequence point, an object
shall have its stored value modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value to be stored.” If
a program breaks these rules, the results on any particular implementation are entirely
unpredictable.
Each of the following statements are examples that have undefined behavior:
a = a++;
a[n] = b[n++];
a[i++] = i;

Some more complicated cases are not diagnosed by this option, and it may give an
occasional false positive result, but in general it has been found fairly effective at
detecting this sort of problem in programs.

2.7.4.20 SWITCH

The -Wswitch option generates warnings whenever a switch statement has an
index of enumerated type and lacks a case value for one or more of the named codes
of that enumeration. (The presence of a default label prevents this warning.) Any
case label values outside the enumeration range also provoke warnings when this
option is used.
 2012-2018 Microchip Technology Inc. DS50002750A-page 33

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.4.21 SYSTEM-HEADERS

The -Wsystem-headers option generates warnings for constructs found in system
header files.
Warnings from system headers are normally suppressed on the assumption that they
usually do not indicate real problems and would only make the compiler output harder
to read. Using this command line option tells the compiler to emit warnings from system
headers as if they occurred in user code. However, note that using -Wall in conjunc-
tion with this option does not warn about unknown pragmas in system headers. For
that, -Wunknown-pragmas must also be used.

2.7.4.22 TRIGRAPHS

The -Wtrigraphs option generates warnings if trigraphs are enabled and have been
encountered in the program.

2.7.4.23 UNINITIALIZED

The -Wuninitialized option generates warnings if an automatic variable is used
without first being initialized. Such variables can contain unknown values.
These warnings are possible only when optimization is enabled, because they require
data flow information that is computed only when optimizing.
These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable that is declared volatile, or whose
address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur
for structures, unions or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used only to compute a value
that itself is never used, because such computations may be deleted by data flow anal-
ysis before the warnings are printed.

2.7.4.24 UNKNOWN-PRAGMAS

The -Wunknown-pragmas option generates warnings when a #pragma directive is
encountered which is not understood by the compiler. If this command line option is
used, warnings will even be issued for unknown pragmas in system header files. This
is not the case if the warnings were only enabled by the -Wall command line option.

2.7.4.25 UNUSED

The -Wunused option generates warnings whenever the following is true:
• A variable is unused aside from its declaration
• A function is declared static but never defined
• A label is declared but not used
• A statement computes a result that is explicitly not used
In order to get a warning about an unused function parameter, both -W and -Wunused
must be specified.
Casting an expression to void suppresses this warning for an expression. Similarly, the
unused attribute suppresses this warning for unused variables, parameters and labels.
DS50002750A-page 34  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.4.26 UNUSED-FUNCTION

The -Wunused-function option generates warnings whenever a static function is
declared but not defined or a non-inline static function is unused.

2.7.4.27 UNUSED-LABEL

The -Wunused-label option generates warnings whenever a label is declared but
not used. To suppress this warning, use the unused attribute.

2.7.4.28 UNUSED-PARAMETER

The -Wunused-parameter option generates warnings whenever a function parame-
ter is unused aside from its declaration. To suppress this warning, use the unused attri-
bute.

2.7.4.29 UNUSED-VARIABLE

The -Wunusued-variable option generates warnings whenever a local variable or
non-constant static variable is unused aside from its declaration. To suppress this
warning, use the unused attribute.

2.7.4.30 UNUSED-VALUE

The -Wunused-value option generates warnings whenever a statement computes a
result that is explicitly not used. To suppress this warning, cast the expression to void.
The following -W options are not implied by -Wall. Some of them warn about construc-
tions that users generally do not consider questionable, but which you might occasion-
ally wish to check for. Others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the
warning.

TABLE 2-12: WARNING OPTIONS NOT IMPLIED BY ALL WARNINGS
Option Controls

-Wextra The generation of additional warning messages
-Waggregate-return Warnings from aggregate objects being returned
-Wbad-function-cast Warnings from functions cast to a non-matching type
-Wcast-qual Warnings from discarded pointer qualifiers
-Wconversion Warnings from implicit conversions that can alter values
-Werror Generation of errors instead of warnings for dubious

constructs
-Winline Warnings when functions cannot be in-lined
-Wlarger-than=len Warnings when defining large objects
-W[no-]long-long Warnings from use of long long
-Wmissing-declarations Warnings when functions are not declared
-Wmissing-
 format-attribute

Warnings with missing format attributes

-Wmissing-noreturn Warnings from potential noreturn attribute omissions
-Wmissing-prototypes Warnings when functions are not declared with prototype
-Wnested-externs Warnings from extern declarations
-Wno-deprecated-
 declarations

Whether warnings are produced for deprecated
declarations

-Wpointer-arith Warnings when taking size of unsized types
-Wredundant-decls Warnings from redundant declarations
-Wshadow Warnings when local objects shadow other objects
 2012-2018 Microchip Technology Inc. DS50002750A-page 35

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.4.31 EXTRA

The -Wextra option generates extra warnings in the following situations.
• A nonvolatile automatic variable might be changed by a call to longjmp. These

warnings are possible only in optimizing compilation. The compiler sees only the
calls to setjmp. It cannot know where longjmp will be called. In fact, a signal
handler could call it at any point in the code. As a result, a warning may be gener-
ated even when there is in fact no problem, because longjmp cannot in fact be
called at the place that would cause a problem.

• A function could exit both via return value; and return;. Completing the
function body without passing any return statement is treated as return;.

• An expression-statement or the left-hand side of a comma expression contains no
side effects. To suppress the warning, cast the unused expression to void. For
example, an expression such as x[i,j] causes a warning, but x[(void)i,j]
does not.

• An unsigned value is compared against zero with < or <=.
• A comparison like x<=y<=z appears. This is equivalent to (x<=y ? 1 : 0) <=
z, which is a different interpretation from that of an ordinary mathematical nota-
tion.

• Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

• If -Wall or -Wunused is also specified, warn about unused arguments.
• A comparison between signed and unsigned values could produce an incorrect

result when the signed value is converted to unsigned (but won’t warn if
-Wno-sign-compare is also specified).

• An aggregate has a partly bracketed initializer. For example, the following code
would evoke such a warning, because braces are missing around the initializer for
x.h:

- struct s { int f, g; };

- struct t { struct s h; int i; };

- struct t x = { 1, 2, 3 };

• An aggregate has an initializer that does not initialize all members. For example,
the following code would cause such a warning, because x.h would be implicitly
initialized to zero:
- struct s { int f, g, h; };

- struct s x = { 3, 4 };

2.7.4.32 AGGREGATE-RETURN

The -Waggregrate-return option generates warnings if any functions that return
structures or unions are defined or called.

-W[no-]sign-compare Warnings from signed comparisons
-Wstrict-prototypes Warnings from K&R function declarations
-Wtraditional Warnings from traditional differences
-Wundef Warnings from undefined identifiers
-Wunreachable-code Warnings from unreachable code
-Wwrite-strings Warnings when using non-const string pointers

TABLE 2-12: WARNING OPTIONS NOT IMPLIED BY ALL WARNINGS
Option Controls
DS50002750A-page 36  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.4.33 BAD-FUNCTION-CAST

The -Wbad-function-cast option generates warnings whenever a function call is
cast to a non-matching type. For example, warn if a call to a function defined as int
foof() is cast to anything a pointer type.

2.7.4.34 CAST-QUALIFIER

The -Wcast-qual option generates warnings whenever a pointer is cast, so as to
remove a type qualifier from the target type. For example, warn if a const char * is
cast to an ordinary char *.

2.7.4.35 CONVERSION

The -Wconversion option generates warnings if a prototype causes a type conver-
sion that is different from what would happen to the same argument in the absence of
a prototype. This includes conversions of fixed point to floating and vice versa, as well
as conversions changing the width or signedness of a fixed point argument, except
when the same as the default promotion.
Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned. But
do not warn about explicit casts like (unsigned) -1.

2.7.4.36 ERROR

The -Werror option turns all warnings into errors.

2.7.4.37 INLINE

The -Winline option generates warnings if a function can not be in-lined, and either
it was declared as in-line, or else the -finline-functions option was given.

2.7.4.38 LARGER-THAN

The -Wlarger-than=len option generates warnings whenever an object larger than
len bytes is defined.

2.7.4.39 LONG LONG

The -Wlong-long option generates warnings if long long types are used. This is
the default. To inhibit the warning messages, use -Wno-long-long. Flags
-Wlong-long and -Wno-long-long are taken into account only when -pedantic
flag is used.

2.7.4.40 MISSING-DECLARATIONS

The -Wmissing-declarations option generates a warning if a global function is
defined without a previous declaration, even if that definition itself provides a prototype.

2.7.4.41 MISSING-FORMAT-ATTRIBUTE

The -Wmissing-format-attribute option, when used with the -Wformat option,
generates warnings about functions and function pointers that are candidates for the
format attribute. Note that it is up to you to confirm that this attribute is valid for the
indicated functions.
 2012-2018 Microchip Technology Inc. DS50002750A-page 37

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.4.42 MISSING-NORETURN

The -Wmissing-noreturn option generates warnings about functions that might be
candidates for attribute noreturn. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions. In fact, do not ever return
before adding the noreturn attribute, otherwise subtle code generation bugs could be
introduced.

2.7.4.43 MISSING-PROTOTYPE

The -Wmissing-prototypes option generates warnings if a global function is
defined without a previous prototype declaration, even if the definition itself provides a
prototype. (This option can be used to detect global functions that are not declared in
header files.)

2.7.4.44 NESTED-EXTERNS

The -Wnested-externs option generates warnings if an extern declaration is
encountered within a function.

2.7.4.45 NO-DEPRECATED-DECLARATIONS

The -Wno-deprecated-declarations option prevents warnings about uses of
functions, variables and types marked as deprecated by using the deprecated attri-
bute.

2.7.4.46 POINTER-ARITH

The -Wpointer-arith option generates warnings about code that depends on the
size of a function type or of void. The compiler assigns these types a size of 1, for con-
venience in calculations with void * pointers and pointers to functions.

2.7.4.47 REDUNDANT-DECLS

The -Wredundant-decls option generates warnings if anything is declared more
than once in the same scope, even in cases where multiple declarations are valid and
change nothing.

2.7.4.48 SHADOW

The -Wshadow option generates warnings whenever a local variable shadows another
local variable.

2.7.4.49 SIGNED-COMPARE

The -Wsigned-compare option generates warnings when a comparison between
signed and unsigned values could produce an incorrect result when the signed value
is converted to unsigned. This warning is also enabled by -W. To get the other warnings
of -W without this warning, use -W -Wno-sign-compare.

2.7.4.50 STRICT-PROTOTYPES

The -Wstrict-prototypes option generates warnings if a function is declared or
defined in the old K & R style, without specifying the argument types. (An old-style func-
tion definition is permitted without a warning if preceded by a declaration which speci-
fies the argument types.)
DS50002750A-page 38  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.4.51 TRADITIONAL

The -Wtraditional option generates warnings about certain constructs that behave
differently in traditional and ANSI C.
• Macro arguments occurring within string constants in the macro body. These

would substitute the argument in traditional C, but are part of the constant in ANSI
C.

• A function declared external in one block and then used after the end of the block.
• A switch statement has an operand of type long.
• A nonstatic function declaration follows a static one. This construct is not

accepted by some traditional C compilers.

2.7.4.52 UNDEF

The -Wundef option generates warnings if an undefined identifier is evaluated in an
#if directive.

2.7.4.53 UNREACHABLE-CODE

The -Wunreachable-code option generates warnings if the compiler detects code
that will never be executed.
It is possible for this option to produce a warning even though there are circumstances
under which part of the affected line can be executed, so care should be taken when
removing apparently unreachable code. For instance, when a function is in-lined, a
warning may mean that the line is unreachable in only one in-lined copy of the function.

2.7.4.54 WRITE-STRING

The -Wwrite-strings option gives string constants the type const
char[length] so that copying the address of one into a non-const char * pointer
generates a warning. At compile time, these warnings help you find code that you can
try to write into a string constant, but only if you have been very careful about using
const in declarations and prototypes. Otherwise, it’s just a nuisance, which is why
-Wall does not request these warnings.
 2012-2018 Microchip Technology Inc. DS50002750A-page 39

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.5 Options for Debugging
The options shown in Table 2-13 control the debugging output produced by the com-
piler and are discussed in the sections that follow.

2.7.5.1 G: PRODUCE DEBUGGING INFORMATION

The -g option instructs the compiler to produce additional information, which can be
used by hardware tools to debug your program. By default, the compiler produces
dwarf release 2 files.
The compiler supports the use of -g with -O making it possible to debug optimized
code; however, the shortcuts taken by optimized code may occasionally produce sur-
prising results. The following might be observed.
• Some declared variables may not exist at all
• Flow of control may briefly move unexpectedly
• Some statements may not be executed because they compute constant results or

their values were already at hand
• Some statements may execute in different places because they were moved out

of loops

2.7.5.2 Q: PRINT FUNCTION INFORMATION

Using the -Q option will print out each function name as it is compiled, and print some
statistics about each pass when it finishes.

2.7.5.3 SAVE-TEMPS

The -save-temps or -save-temps=cwd option instructs the compiler to keep inter-
mediate files after building.
The intermediate files will be placed in the current directory and have a name based on
the corresponding source file. Thus, compiling foo.c with -save-temps would pro-
duce foo.i, foo.s and the foo.o object file.
The -save-temps=obj form of this option is similar to -save-temps=cwd, but if the
-o option is specified, the temporary files are based on the object file. If the -o option
is not specified, the -save-temps=obj switch behaves like –save-temps.
For example:
 xc8-gcc -save-temps=obj -c foo.c
 xc8-gcc -save-temps=obj -c bar.c -o dir/xbar.o
 xc8-gcc -save-temps=obj foobar.c -o dir2/yfoobar

would create foo.i, foo.s; dir/xbar.i, dir/xbar.s; dir2/yfoobar.i,
dir2/yfoobar.s, and dir2/yfoobar.o.

TABLE 2-13: DEBUGGING OPTIONS
Option Controls

-g The type of debugging information generated
-Q Printing of diagnostics associated with each function as it is compiled,

and statistics about each pass on conclusion.
-save-temps
-save-temps=cwd
-save-temps=obj

Whether intermediate files should be kept after compilation
DS50002750A-page 40  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.6 Options for Controlling Optimization
The options shown in Table 2-14 control compiler optimizations and are described in
the sections that follow.

2.7.6.1 O0: LEVEL OPTIMIZATIONS

The -O0 option disables optimization.
Without -O, the compiler’s goal is to reduce the cost of compilation and to make debug-
ging produce the expected results. Statements are independent: if you stop the pro-
gram with a breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the function and get
exactly the results you would expect from the source code.
The compiler only allocates variables declared register in registers.
The following options control specific optimizations. The -O2 option turns on all of
these optimizations except -funroll-loops, -funroll-all-loops and
-fstrict-aliasing.

2.7.6.2 O1: LEVEL OPTIMIZATIONS

The -O or -O1 options request level 1 optimizations.
The optimizations performed when using -O1 take somewhat longer to perform and
require much more host memory when processing large functions. The compiler will try
to reduce code size and execution time.
The compiler turns on -fthread-jumps and -fdefer-pop. The compiler turns on
-fomit-frame-pointer.

2.7.6.3 O2: LEVEL OPTIMIZATIONS

The -O2 option performs nearly all supported optimizations that do not involve a
space-speed trade-off.
At this level, the compiler performs nearly all supported optimizations that do not
involve a space-speed trade-off. This option turns on all optional optimizations except
for loop unrolling (-funroll-loops), function inlining (-finline-functions), and
strict aliasing optimizations (-fstrict-aliasing). It also turns on force copy of
memory operands (-fforce-mem) and Frame Pointer elimination
(-fomit-frame-pointer). As compared to -O, this option increases both compila-
tion time and the performance of the generated code.

TABLE 2-14: GENERAL OPTIMIZATION OPTIONS
Option Edition Builds with

-O0 All No optimizations (default)
-O
-O1

All Optimization level 1

-O2 PRO only Optimization level 2
-O3 PRO only Optimization level 3
-Og All Better debugging
-Os PRO only Size orientated optimizations
-flto PRO only The standard link-time optimizer
-fwhole-program PRO only The whole-program optimizations
 2012-2018 Microchip Technology Inc. DS50002750A-page 41

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.6.4 O3: LEVEL OPTIMIZATIONS

The -O3 option requests nearly all supported optimizations, even those that might
increase program size.
The -O3 option turns on all optimizations specified by -O2 and also turns on the
inline-functions option.

2.7.6.5 OG: BETTER DEBUGGING

The -Og option enables optimizations that do not interfere with debugging, offering a
reasonable level of optimization while maintaining fast compilation and a good debug-
ging experience.

2.7.6.6 OS: LEVEL OPTIMIZATIONS

The -Os option requests nearly all supported optimizations that decrease program
size.
The -Os option enables all -O2 optimizations that do not typically increase code size.
It also performs further optimizations designed to reduce code size.

2.7.6.7 LTO

This -flto option runs the standard link-time optimizer.
When this option is used, the compiler adds a special section to the object file to hold
the intermediate code. When the object files are linked together, all the function bodies
are read from these sections and instantiated as if they had been part of the same
translation unit.
To use the link-timer optimizer, specify -flto both at compile time and during the final
link. For example
xc8-cc -c -O1 -flto -mcpu= atmega3250p foo.c
xc8-cc -c -O1 -flto -mcpu= atmega3250p bar.c
xc8-cc -o myprog.elf -flto -O3 -mcpu=atmega3250p foo.o bar.o

Another (simpler) way to enable link-time optimization is,
xc8-cc -o myprog.elf -flto -O3 -mcpu=atmega3250p foo.c bar.c

Link time optimizations should not be used with the -fwhole-program optimizations.

2.7.6.8 WHOLE-PROGRAM

This -fwhole-program option runs more aggressive interprocedural optimizations.
When this option is used, the compiler assumes that the current compilation unit rep-
resents the whole program being compiled. All public functions and variables, with the
exception of main() and those merged by attribute externally_visible, are
assumed to be static and in effect are optimized more aggressively by interproce-
dural optimizers.
Whole-program optimizations should not be used with the -flto optimizations.
DS50002750A-page 42  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.7 Options for Controlling the Preprocessor
The options shown in Table 2-15 control the preprocessor and are discussed in the
sections that follow.

2.7.7.1 C: PRESERVE COMMENTS

The -C option tells the preprocessor not to discard comments from the output. Use this
option with the -E option to see commented yet preprocessed source code.

2.7.7.2 DD: PRESERVE MACRO DEFINITIONS

The -dD option is similar to the -dM option, but tells the preprocessor to not remove
macro definitions from the output.

2.7.7.3 D: DEFINE A MACRO

The -Dmacro option defines macro called macro with the text 1 as its definition.
The -Dmacro=text form of this option defines the macro macro which will subse-
quently expand to be the text text. All instances of -D on the command line are pro-
cessed before any -U options.
Defining macros as C string literals requires bypassing any interpretation issues in the
operating system that is being used. To pass the C string, "hello world", (including
the quote characters) in the Windows environment, use: "-DMY_STRING=\\\"hello
world\\\"" (you must include the quote characters around the entire option, as there
is a space character in the macro definition). Under Linux or Mac OS X, use:
-DMY_STRING=\"hello\ world\".

TABLE 2-15: PREPROCESSOR OPTIONS
Option Controls

-C Preserve comments
-dD Preserve macro definitions
-Dmacro
-Dmacro=defn

Define a macro

-dM Output macro definition list
-dN Preserve macro names
-fno-show-column Omit column numbers in diagnostics
-H Print header file name
-include file Include file
-iquote Specify quoted include file search path
-M Generate make rule
-MD Write dependency information to file
-MF file Specify dependency file
-MG Ignore missing header files
-MM Generate make rule for quoted headers
-MMD Generate make rule for user headers
-MP Add phony target for dependency
-MQ Change rule target with quotes
-MT target Change rule target
-nostdinc System directories omitted from header search
-P Don’t generate #line directives
-trigraphs Support trigraphs
-Umacro Undefine macros
-undef Do not predefine nonstandard macros
 2012-2018 Microchip Technology Inc. DS50002750A-page 43

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.7.4 DM: OUTPUT MACRO DEFINITION LIST

The -dM option tells the preprocessor to output only a list of the macro definitions that
are in effect at the end of preprocessing. Used with the -E option.

2.7.7.5 DN: PRESERVE MACRO NAMES

The -dN option is like -dD except that the macro arguments and contents are omitted.
Only the macro name is included in the output.

2.7.7.6 NO-SHOW-COLUMN

The -fno-show-column option controls whether column numbers will be printed in
diagnostics. This may be necessary if diagnostics are being scanned by a program that
does not understand the column numbers, such as DejaGnu.

2.7.7.7 H: PRINT HEADER FILES

The -H option prints to the console the name of each header file used, in addition to
other normal activities.

2.7.7.8 INCLUDE

The -include file option processes file as if #include "file" appeared as
the first line of the primary source file. In effect, the contents of file are compiled first.
Any -D and -U options on the command line are always processed before -include
file, regardless of the order in which they are written. All the -include and -imacros
options are processed in the order in which they are written.

2.7.7.9 IQUOTE

The -iquote dir option adds the directory dir to the list of directories to be
searched for header files during preprocessing. Directories specified with -iquote
apply only to the quoted form of the directive, #include "file".

2.7.7.10 M: GENERATE MAKE RULE

The -M option tells the preprocessor to output a rule suitable for make describing the
dependencies of each object file. For each source file, the preprocessor outputs one
make-rule whose target is the object file name for that source file and whose depen-
dencies are all the header files it includes. This rule may be a single line or may be con-
tinued with \-newline if it is long. The list of rules is printed on standard output
instead of the preprocessed C program.
The -M option implies -E.

2.7.7.11 MD: WRITE DEPENDENCY INFORMATION TO FILE

The -MD option is similar to -M but the dependency information is written to a file and
compilation continues. The file containing the dependency information is given the
same name as the source file with a .d extension.

2.7.7.12 MF: SPECIFY DEPENDENCY FILE

The -MF file option specifies a file in which to write the dependencies for the -M or
-MM options. If no -MF switch is given, the preprocessor sends the rules to the same
place it would have sent preprocessed output.
When used with the driver options, -MD or -MMD, -MF, overrides the default depen-
dency output file.
DS50002750A-page 44  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.7.13 MG: IGNORE MISSING HEADER FILES

The -MG option treats missing header files as generated files and adds them to the
dependency list without raising an error. It assumes the files live in the same directory
as the source file. If -MG is specified, then either -M or -MM must also be specified. The
-MG option is not supported with -MD or -MMD.

2.7.7.14 MM: GENERATE MAKE RULE FOR QUOTED HEADERS

The -MM option is like -M but the output mentions only the user header files included
with #include "file". System header files included with #include <file> are
omitted.

2.7.7.15 MMD: GENERATE MAKE RULE FOR USER HEADERS

The -MMD option is like -MD except mention only user header files, not system header
files.

2.7.7.16 MP: ADD PHONY TARGET FOR DEPENDENCY

The -MP option instructs the preprocessor to add a phony target for each dependency
other than the main file, causing each to depend on nothing. These dummy rules work
around make errors if you remove header files without updating the make-file to match.
This is typical output:
test.o: test.c test.h
test.h:

2.7.7.17 MQ: CHANGE RULE TARGET WITH QUOTES

The -MQ option is similar to -MT, but it quotes any characters which are special to
make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o: foo.c
The default target is automatically quoted, as if it were given with -MQ.

2.7.7.18 MT: CHANGE RULE TARGET

The -MT target option changes the target of the rule emitted by dependency gener-
ation. By default, the preprocessor takes the name of the main input file, including any
path, deletes any file suffix such as .c, and appends the platform’s usual object suffix.
The result is the target.
An -MT option sets the target to be exactly the string you specify. If you want multiple
targets, you can specify them as a single argument to -MT, or use multiple -MT options.
For example:
-MT '$(objpfx)foo.o' might give $(objpfx)foo.o: foo.c

2.7.7.19 NOSTDINC

The -nostdinc option removes the standard system directories from the search for
header files. Only the directories you have specified with -I options (and the current
directory, if appropriate) are searched.
By using both -nostdinc and -iquote, the include-file search path can be limited to
only those directories explicitly specified.

2.7.7.20 P: DON’T GENERATE #LINE DIRECTIVES

The -P option tells the preprocessor not to generate #line directives in the prepro-
cessed output. Used with the -E option.
 2012-2018 Microchip Technology Inc. DS50002750A-page 45

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.7.21 TRIGRAPHS

The -trigraphs option turns on support for ANSI C trigraphs. The -ansi option also
has this effect.

2.7.7.22 U: UNDEFINE MACROS

The -Umacro option undefines the macro macro. All -U options are evaluated after all
-D options, but before any -include and -imacros options.

2.7.7.23 UNDEF

The -undef option prevents any system-specific or GCC-specific macros being pre-
defined (including architecture flags).

2.7.8 Options for Assembling
The options shown in Table 2-16 control assembler operations and are discussed in the
sections that follow.

2.7.8.1 WA: PASS OPTION TO THE ASSEMBLER

The -Wa,option option passes its option argument directly to the assembler. If option
contains commas, it is split into multiple options at the commas.

2.7.8.2 XASSEMBLER ASSEMBLER OPTION

The -Xassembler,option option pass option to the assembler where it will be
interpreted as an assembler option. You can use this to supply system-specific assem-
bler options that the compiler does not know how to recognize.

2.7.9 Mapped Assembler Options
The option shown in Table 2-17 is a commonly used assembler option.

TABLE 2-16: ASSEMBLY OPTIONS
Option Controls

-Wa,option Options to passed to the assembler.
-Xassembler option Options to passed to the assembler.

TABLE 2-17: MAPPED ASSEMBLER OPTIONS
Option Controls

-Wl,-a The generation of an assembly list file
DS50002750A-page 46  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.10 Options for Linking
The options shown in Table 2-18 control linker operations and are discussed in the sec-
tions that follow. If any of the options -c, -S or -E are used, the linker is not run.

2.7.10.1 LLIBRARY

The -llibrary option scans the library named library for unresolved symbols
when linking.
The linker searches a standard list of directories for the library with the name
library.a.
It makes a difference where you write this option in the command. The linker processes
libraries and object files in the order they are specified. Thus, foo.o -lz bar.o
searches library z after file foo.o but before bar.o. If bar.o refers to functions in
libz.a, those functions may not be loaded.
The directories searched include several standard system directories, plus any that you
specify with -L.
Normally the files found this way are library files (archive files whose members are
object files). The linker handles an archive file by scanning through it for members
which define symbols that have been referenced but not defined yet. But if the file found
is an ordinary object file, it is linked in the usual fashion. The only difference between
using an -l option (e.g., -lmylib) and specifying a file name (e.g., mylib.a) is that
the compiler will search for a library specified using -l in several directories, as spec-
ified by the -L option.

2.7.10.2 NODEFAULTLIBS

The -nodefaultlibs option will prevent the standard system libraries being used
when linking. Only the libraries you specify are passed to the linker.

2.7.10.3 NOSTARTFILES

The -nostartfiles option will prevent the runtime startup modules from being
linked into the project.

2.7.10.4 NOSTDLIB

The -nostdlib option will prevent the standard system start-up files and libraries
being used when linking. No start-up files and only the libraries you specify are passed
to the linker.

TABLE 2-18: LINKING OPTIONS
Option Controls

-llibrary Which library files are scanned
-nodefaultlibs Whether library code is linked with the project
-nostartfiles Whether the runtime startup module is linked in
-nostdlib Whether the library and startup code is linked with the project
-s Remove all symbol table and relocation information from the

executable.
-u symbol The linking in of library modules so that symbol can be defined.

It is legitimate to use -u multiple times with different symbols to
force loading of additional library modules.

-Wl,option Options passed to the linker.
-Xlinker option System-specific options to passed to the linker
 2012-2018 Microchip Technology Inc. DS50002750A-page 47

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.10.5 S: REMOVE SYMBOL INFORMATION

The -s option removes all symbol table and relocation information from the output.

2.7.10.6 U: ADD UNDEFINED SYMBOL

The -u option adds an undefined symbol at the link stage. To resolve the symbol, the
linker will search library modules for its definition, thus this option is useful if you want
to force a library module to be linked in. It is legitimate to use -u multiple times with
different symbols to force loading of additional library modules.

2.7.10.7 WL OPTION

The -Wl,option option pass option to the linker where it will be interpreted as a
linker option. If option contains commas, it is split into multiple options at the commas.

2.7.10.8 XLINKER OPTION

The -Xl,option option pass option to the linker where it will be interpreted as a
linker option. You can use this to supply system-specific linker options that the compiler
does not know how to recognize.

2.7.11 Mapped Linker Options
The options shown in Table 2-19 are commonly used linker options.

2.7.12 Options for Directory Search
The options shown in Table 2-20 control directories searched operations and are dis-
cussed in the sections that follow.

2.7.12.1 IDIRAFTER

The -idirafter dir option adds the directory dir to the second include path. The
directories on the second include path are searched when a header file is not found in
any of the directories in the main include path, including those specified by -I.

TABLE 2-19: MAPPED LINKER OPTIONS
Option Controls

-Wl,-[no-]data-init Clearing and initialization of C objects at runtime startup
-Wl,-Map=mapfile The generation of a linker map file

TABLE 2-20: DIRECTORY SEARCH OPTIONS
Option Controls

-idirafter dir Additional directories searched for headers after searching
system paths

-imacros file Include file macro definitions only
-Idir The directories searched for preprocessor include files
-Ldir The directories searched for libraries
-nostdinc The directories searched for headers
DS50002750A-page 48  2012-2018 Microchip Technology Inc.

XC8 Command-line Driver
2.7.12.2 IMACRO

The -imacros file option processes file exactly like when using the -include
option, except that any output produced by scanning the file is thrown away. The Mac-
ros it defines remain defined. Because the output generated from the file is discarded,
the only effect of -imacros file is to make the macros defined in file available for use
in the main input.
Any -D and -U options on the command line are always processed before -imacros
file, regardless of the order in which they are written. All the -include and
-imacros options are processed in the order in which they are written.

2.7.12.3 I: SPECIFY INCLUDE FILE SEARCH PATH

The -I dir option adds the directory dir to the head of the list of directories to be
searched for header files.
This can be used to override a system header file, substituting your own version, since
these directories are searched before the system header file directories. If you use
more than one -I option, the directories are scanned in left-to-right order. The standard
system directories come after.
The option can specify either an absolute or relative path, and it can be used more than
once if multiple additional directories are to be searched, in which case they are
scanned from left to right.The standard system directories are searched after scanning
the directories specified with this option.
Under the Windows OS, the use of the directory backslash character may unintention-
ally form an escape sequence. To specify an include file path that ends with a directory
separator character and which is quoted, use -I "E:\\", for example, instead of -I
"E:\", to avoid the escape sequence \". Note that MPLAB X IDE will quote any
include file path you specify in the project properties and that search paths are relative
to the output directory, not the project directory.

2.7.12.4 LDIR

The -Ldir option adds the directory dir to the list of directories to be searched for
libraries specified by the command line option -l.

2.7.12.5 NOSTDINC

The -nostdinc option prevents the standard system directories for header files being
searched by the preprocessor. Only the directories you have specified with -I options
and the current directory (if appropriate) are searched.
 2012-2018 Microchip Technology Inc. DS50002750A-page 49

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
2.7.13 Options for Code Generation Conventions
The options shown in Table 2-21 control machine-independent conventions used when
generating code and are discussed in the sections that follow.

2.7.13.1 -FSHORT-ENUMS

The -fshort-enums option allocates the smallest possible integer type to an enum
such that the range of possible values can be held. Use of this option generates code
that is not binary compatible with code generated without the option.

TABLE 2-21: CODE GENERATION CONVENTION OPTIONS
Option Controls

-fshort-enums The size of enum types
DS50002750A-page 50  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR MCU

Chapter 3. C Language Features
3.1 INTRODUCTION
The MPLAB XC8 C Compiler supports a number of special features and extensions to
the C language which are designed to ease the task of producing ROM-based applica-
tions for 8-bit AVR devices. This chapter documents the special language features
which are specific to these devices.
• C Standard Compliance
• Device-Related Features
• Supported Data Types and Variables
• Memory Allocation and Access
• Operators and Statements
• Register Usage
• Functions
• Interrupts
• Main, Runtime Startup and Reset
• Libraries
• Mixing C and Assembly Code
• Optimizations
• Preprocessing
• Linking Programs

3.2 C STANDARD COMPLIANCE
This compiler is a freestanding implementation that conforms to the ISO/IEC
9899:1990 Standard (referred to as the C90 standard) as well the ISO/IEC 9899:1999
Standard (C99) for programming languages. The program standard can be selected
using the -std option (see Section 2.7.3.8 “std”).
This implementation make no assumptions about any underlying operating system,
and does not provide support for streams, files, or threads. Aspects of the compiler that
diverge from the standards are discussed in this section.

3.2.1 Common C Interface Standard
This compiler conforms to the Microchip XC compiler Common C Interface standard
(CCI), and can verify that C source code is compliant with CCI.
CCI is a further refinement of the C standards that attempts to standardize implemen-
tation-defined behavior and non-standard extensions across the entire MPLAB XC
compiler family.
CCI can be enforced by using the -mext=cci option (see Section 2.7.3.7 “ext”).
 2012-2018 Microchip Technology Inc. DS50002750A-page 51

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.2.2 Divergence from the C99 Standard
The C language implemented on MPLAB XC8 C Compiler can diverge from the C99
Standard in several areas.

3.2.2.1 COMPLEX NUMBER SUPPORT

The complex type _Imaginary is not supported (although the use of _Complex is
permitted). The <complex.h> header is also not supported.

3.3 DEVICE-RELATED FEATURES
MPLAB XC8 has several features which relate directly to the 8-bit AVR architectures
and instruction sets. These are detailed in the following sections.

3.3.1 Device Support
The MPLAB XC8 C Compiler aims to support all 8-bit PIC and AVR devices (excluding
only the avr1 architecture devices, which must be programmed in assembly). This
user’s guide should be consulted when you are programming an 8-bit AVR device;
when programming a PIC target, see the MPLAB® XC8 C Compiler User’s Guide for
PIC® MCU (DS50002737).

3.3.2 Instruction Set Support
The compiler support all instruction sets for all 8-bit AVR devices, excluding that for the
avr1 architecture.

3.3.3 Device Header Files
There is one header file that is typically included into each C source file you write. The
file is <xc.h> and is a generic header file that will include other device- and
architecture-specific header files when you build your project. This file can also be
included into assembly source files.
Inclusion of this file will allow access to special function registers, as well as
device-specific macros definitions.
The header files shipped with the compiler are specific to that compiler version. Future
compiler versions may ship with modified header files. Avoid including header files that
have been copied into you project. Such projects might no longer be compatible with
future versions of the compiler.

3.3.4 Stacks
There is one stack implemented by MPLAB XC8. This stack is used for both function
return addresses and stack-based objects allocated by functions. The registers r28 and
r29 (Y pointer) act as a frame pointer from which stack-based objects can be accessed.
The stack pointer is initialized to the highest valid data memory address. As functions
are called, they allocate a chunk of memory for the stack-based objects and the stack
grows down in memory, towards smaller addresses. When the function exits, the mem-
ory it claimed is made available to other functions.
Note that the compiler cannot detect for overflow of the memory reserved for the stack
as a whole. There is no runtime check made for software stack overflows. If the soft-
ware stack overflows, data corruption and code failure might result.
DS50002750A-page 52  2012-2018 Microchip Technology Inc.

C Language Features
3.3.5 Configuration Bit Access
Configuration bits or fuses are used to set up fundamental device operation, such as
the oscillator mode, watchdog timer, programming mode and code protection. These
bits must be correctly set to ensure your program executes correctly.
Use the configuration pragma, which has the following form, to set up your device.
#pragma config setting = state|value

Here, setting is a configuration setting descriptor, e.g., WDT, and state is a textual
description of the desired state, e.g., SET.
Consider the following examples.
#pragma config WDTON = SET
#pragma config EESAVE = CLEAR
#pragma config BODLEVEL = BODLEVEL_4V3

One pragma can be used to program several settings by separating each setting-value
pair with a comma. For example, the above could be specified with one pragma, as in
the following.
#pragma config WDTON=SET, EESAVE=CLEAR, BODLEVEL=BODLEVEL_4V3

The value field is a constant that can be used in preference to a descriptor, as in the
following.
#pragma config SUT_CKSEL = 0x10

Setting-value pairs are not scanned by the preprocessor and they are not subject to
macro substitution. The setting-value pairs must not be placed in quotes.
The config pragma does not produce executable code, and ideally it should be
placed outside function definitions.
Those bits not specified by a pragma are assigned a default value. Rather than rely on
this default value, all the bits in the Configuration Words should be programmed to pre-
vent erratic program behavior.

3.3.6 Signatures
A signature value can be used by programming software to verify the program was built
for the intended device before it is programmed.
Signatures are specified with each device and can be added to your program by simply
including the <avr/signature.h> header file. This header will declare a constant
unsigned char array in your code and initialize it with the three signature bytes, MSB
first, that are defined in the device’s I/O header file. This array is then placed in the
.signature section in the resulting linked ELF file. This header file should only be
included once in an application.
The three signature bytes used to initialize the array are these defined macros in the
device I/O header file, from MSB to LSB: SIGNATURE_2, SIGNATURE_1,
SIGNATURE_0.
 2012-2018 Microchip Technology Inc. DS50002750A-page 53

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.3.7 Using SFRs From C Code
The Special Function Registers (SFRs) are memory mapped registers that can be
accessed from C programs. Each register can be accessed using a macro that is avail-
able once you include <xc.h>. For example:
#include <xc.h>
if(EEDR == 0x0)
 PORTA = 0x55;

Bits within SFRs can be accessed via a special macro, _BV(), and other macros which
represent the bit you wish to access. For example, to set bit #1 in PORTB, use the fol-
lowing.
PORTB |= _BV(PB1);

To clear both bits #4 and #5 in EECR, use the following.
EECR &= ~(_BV(EEPM4) | _BV(EEPM5));

In both these examples, the compiler will use the device’s single bit set and clear
instructions whenever possible.

3.3.7.1 SPECIAL REGISTER ISSUES

Some of the timer-related 16-bit registers internally use an 8-bit wide temporary regis-
ter (called TEMP in the device data sheets) to guarantee atomic access to the timer,
since two separate byte transfers are required to move timer values. Typically, this reg-
ister is used by the device when accessing the current timer/counter value register
(TCNTn), the input capture register (ICRn), and when writing the output compare reg-
isters (OCRnM). Refer to your device data sheet to determine which peripherals make
use of the TEMP register.
This temporary register is not accessible to your program, but it is shared by many
peripherals, thus your program needs to ensure that the register is not corrupted by
interrupt routines that also uses this register.
Within main-line code, interrupts could be disabled during the execution of the code
which utilizes this register. That can be done be encapsulating the code in calls to the
cli() and sei() macros, but if the status of the global interrupt flag is not known, the
following example code can be used.
unsigned int read_timer1(void)
{
 unsigned char sreg;
 unsigned int val;

 sreg = SREG; // save state of interrupt
 cli(); // disbale interrupts
 val = TCNT1; // read timer value register; TEMP used internally
 SREG = sreg; // restore state of interrupts

 return val;
}

DS50002750A-page 54  2012-2018 Microchip Technology Inc.

C Language Features
3.4 SUPPORTED DATA TYPES AND VARIABLES

3.4.1 Identifiers
Identifiers used to represent C objects and functions must conform to strict rules.
A C identifier is a sequence of letters and digits, where the underscore character “_”
counts as a letter. Identifiers cannot start with a digit. Although they can start with an
underscore, such identifiers are reserved for the compiler’s use and should not be
defined by your programs.
Identifiers are case sensitive, so main is different to Main.

3.4.2 Integer Data Types
The MPLAB XC8 compiler supports integer data types with 1, 2, 4 and 8 byte sizes.
Table 3-1 shows the data types and their corresponding size and arithmetic type.

If no type signedness is specified (even for char types), then that type is signed.
All integer values are represented in little endian format with the Least Significant Byte
(LSB) at the lower address.
Signed values are stored as a two’s complement integer value.
The range of values capable of being held by these types is summarized in Table A-8
The symbols in this table are preprocessor macros which are available after including
<limits.h> in your source code. As the size of data types are not fully specified by
the C Standard, these macros allow for more portable code which can check the limits
of the range of values held by the type on this implementation.
Macros are also available in <stdint.h> which define values associated with
fixed-width types, such as int8_t, uint32_t etc.

3.4.3 Boolean Types
The compiler supports _Bool, a type used for holding true and false values. The values
held by variables of this type are not integers. Values converted to a _Bool type result
in 0 (false) if the value is 0; otherwise, they result in 1 (true).
The <stdbool.h> header defines true and false macros that can be used with
_Bool types, and the bool macro, which expands to the _Bool type. For example:
#include <stdbool.h>
_Bool motorOn;
motorOn == false;

TABLE 3-1: INTEGER DATA TYPES
Type Size (bits) Arithmetic Type

signed char 8 Signed integer

unsigned char 8 Unsigned integer

signed short 16 Signed integer

unsigned short 16 Unsigned integer

signed int 16 Signed integer

unsigned int 16 Unsigned integer

signed long 32 Signed integer

unsigned long 32 Unsigned integer

signed long long 64 Signed integer

unsigned long long 64 Unsigned integer
 2012-2018 Microchip Technology Inc. DS50002750A-page 55

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.4.4 Floating-Point Data Types
The MPLAB XC8 compiler supports 32-bit floating-point types. Floating point is imple-
mented using a IEEE 754 32-bit format. Table 3-2 shows the data types.

Floating-point types are always signed and the unsigned keyword is illegal when
specifying a floating-point type. All floating-point values are represented in little endian
format with the LSB at the lower address.
Infinities are legal arguments for all operations and behave as the largest representable
number with that sign. For example, +inf + -inf yields the value 0.
The format for both floating-point types is described in Table 3-3, where:
• Sign is the sign bit, which indicates whether the number is positive or negative.
• The Biased Exponent is 8 bits wide and is stored as excess 127 (i.e., an exponent

of 0 is stored as 127).
• Mantissa, is located to the right of the radix point. There is an implied bit to the left

of the radix point which is always 1 except for a zero value, where the implied bit
is zero. A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent-127) x 1. mantissa.

An example of the IEEE 754 32-bit format shown in Table 3-4. Note that the Most Sig-
nificant Bit (MSb) of the mantissa column (i.e., the bit to the left of the radix point) is the
implied bit, which is assumed to be 1 unless the exponent is zero.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take
the binary number to the right of the decimal point in the mantissa. Convert this to dec-
imal and divide it by 223 where 23 is the size of the mantissa, to give 0.302447676659.
Add 1 to this fraction. The floating-point number is then given by:
-10x2124x1.302447676659
which is approximately equal to:
2.77000e+37
Binary floating-point values are sometimes misunderstood. It is important to remember
that not every floating-point value can be represented by a finite sized floating-point
number. The size of the exponent in the number dictates the range of values that the
number can hold and the size of the mantissa relates to the spacing of each value that
can be represented exactly.

TABLE 3-2: FLOATING-POINT DATA TYPES
Type Size (bits) Arithmetic Type

float 32 Real

double 32 Real

long double 32 Real

TABLE 3-3: FLOATING-POINT FORMATS
Format Sign Biased Exponent Mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

TABLE 3-4: FLOATING-POINT FORMAT EXAMPLE IEEE 754
Format Value Biased Exponent 1.mantissa Decimal

32-bit 7DA6B69Bh
11111011b

1.0100110101101101
0011011b 2.77000e+37

(251) (1.302447676659) —
DS50002750A-page 56  2012-2018 Microchip Technology Inc.

C Language Features
For example, if you are using a 32-bit wide floating-point type, it can store the value
95000.0 exactly. However, the next highest value which can be represented is (approx-
imately) 95000.00781.
The characteristics of the floating-point formats are summarized in Table A-5, where
XXX can be either FLT or DBL, representing float and double types, respectively.
The symbols in this table are preprocessor macros that are available after including
<float.h> in your source code. As the size and format of floating-point data types are
not fully specified by the C Standard, these macros allow for more portable code which
can check the limits of the range of values held by the type on this implementation.

3.4.5 Structures and Unions
MPLAB XC8 C Compiler supports struct and union types. Structures and unions
only differ in the memory offset applied to each member.
These types will be at least 1 byte wide. Bit-fields and _Bool types are fully supported.
Structures and unions can be passed freely as function arguments and function return
values. Pointers to structures and unions are fully supported.

3.4.5.1 STRUCTURE AND UNION QUALIFIERS

The compiler supports the use of type qualifiers on structures. When a qualifier is
applied to a structure, all of its members will inherit this qualification. In the following
example the structure is qualified const.
const struct {
 int number;
 int *ptr;
} record = { 0x55, &i };

In this case, each structure member will be read-only. Remember that all members
should be initialized if a structure is const, as they cannot be initialized at runtime.
 2012-2018 Microchip Technology Inc. DS50002750A-page 57

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.4.5.2 BIT-FIELDS IN STRUCTURES

MPLAB XC8 C Compiler fully supports bit-fields in structures.
Bit-fields are always allocated within 8-bit words, even though it is usual to use the type
unsigned int in the definition.
The first bit defined will be the LSb of the word in which it will be stored. When a bit-field
is declared, it is allocated within the current 8-bit unit if it will fit; otherwise, a new byte
is allocated within the structure. Bit-fields can span the boundary between 8-bit alloca-
tion units; however, the code to access bit-fields that do so is extremely inefficient.
For example, the declaration:
struct {
 unsigned lo : 1;
 unsigned dummy : 6;
 unsigned hi : 1;
} foo;

will produce a structure occupying 1 byte. If foo was ultimately linked at address
0x100, the field lo will be bit 0 of address 0x100 and field hi will be bit 7 of the same
address 0x100. The LSb of dummy will be bit 1and the MSb of dummy will be bit 6.

Unnamed bit-fields can be declared to pad out unused space between active bits in
control registers. You might use this feature to ensure that bit-fields are wholly con-
tained within a byte. For example, if dummy is never referenced, the structure above
could have been declared as:
struct {
 unsigned lo : 6;
 unsigned : 2;
 unsigned hi : 4;
} foo;

A structure with bit-fields can be initialized by supplying a comma-separated list of initial
values for each field. For example:
struct {
 unsigned lo : 1;
 unsigned mid : 6;
 unsigned hi : 1;
} foo = {1, 8, 0};

Structures with unnamed bit-fields can be initialized. No initial value should be supplied
for the unnamed members, for example:
struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo = {1, 0};

will initialize the members lo and hi correctly.
A bit-field that has a size of 0 is a special case. The Standard indicates that no further
bit-field is to be packed into the allocation unit in which the previous bit-field, if any, was
placed.

Note: Accessing bit-fields larger than a single bit can be very inefficient. If code
size and execution speed are critical, consider using a char type or a char
structure member instead.
DS50002750A-page 58  2012-2018 Microchip Technology Inc.

C Language Features
3.4.5.3 ANONYMOUS STRUCTURES AND UNIONS

The MPLAB XC8 compiler supports anonymous structures and unions. These are con-
structs with no identifier and whose members can be accessed without referencing the
identifier of the construct. Anonymous structures and unions must be placed inside
other structures or unions. For example:
struct {

union {
int x;
double y;

};
} aaa;

void main(void)
{

aaa.x = 99;
// ...}

Here, the union is not named and its members accessed as if they are part of the
structure.

3.4.6 Pointer Types
There are two basic pointer types supported by the MPLAB XC8 C Compiler:
• Data pointers - hold the addresses of objects which can be read (and possibly

written) by the program.
• Function pointers - hold the address of an executable function which can be called

via the pointer.
Data pointers (even generic void * pointers) should never be used to hold the
address of functions, and function pointers should never be used to hold the address
of objects.

3.4.6.1 COMBINING TYPE QUALIFIERS AND POINTERS

It is helpful to first review the C conventions for definitions of pointer types.
Pointers can be qualified like any other C object, but care must be taken when doing
so as there are two quantities associated with pointers. The first is the actual pointer
itself, which is treated like any ordinary C variable and has memory reserved for it. The
second is the target (or targets) that the pointer references, or to which the pointer
points. The general form of a pointer definition looks like the following:
target_type_&_qualifiers * pointer’s_qualifiers pointer’s_name;

Any qualifiers to the right of the * (i.e., next to the pointer’s name) relate to the pointer
variable itself. The type and any qualifiers to the left of the * relate to the pointer’s tar-
gets. This makes sense since it is also the * operator that dereferences a pointer, which
allows you to get from the pointer variable to its current target.
 2012-2018 Microchip Technology Inc. DS50002750A-page 59

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Here are three examples of pointer definitions using the volatile qualifier. The fields
in the definitions have been highlighted with spacing:
volatile int * vip ;
int * volatile ivp ;
volatile int * volatile vivp ;

The first example is a pointer called vip. The pointer itself – the variable that holds the
address – is not volatile; however, the objects that are accessed when the pointer
is dereferenced are treated as being volatile. In other words, the target objects
accessible via the pointer can be externally modified.
In the second example, the pointer called ivp is volatile, that is, the address the
pointer contains can be externally modified; however, the objects that can be accessed
when dereferencing the pointer are not volatile.
The last example is of a pointer called vivp which is itself qualified volatile, and
which also holds the address of volatile objects.
Bear in mind that one pointer can be assigned the addresses of many objects; for
example, a pointer that is a parameter to a function is assigned a new object address
every time the function is called. The definition of the pointer must be valid for every
target address assigned.

3.4.6.2 DATA POINTERS

Pointers to objects in the data space are 2 bytes wide.

3.4.6.2.1 Pointers to Both Memory Spaces
When a data pointer is assigned the address of one or more objects that have been
allocated memory in the data space, and also assigned the address of one or more
objects that have been allocated memory in the program memory space, the pointer is
said to have targets with mixed memory spaces.
The __memx pointer target qualifier will allow the pointer to be able to read from both
data and program memories. This qualifier needs to be used in conjunction with the
const specifier and the pointer will be larger in size than a regular data pointer, for
example the following function can read an int from either memory space:
int read(const __memx int * mip) {
 return *mip;
}

3.4.6.3 FUNCTION POINTERS

The MPLAB XC8 compiler fully supports pointers to functions. These are often used to
call one of several function addresses stored in a user-defined C array, which acts like
a lookup table.
Function pointers are two bytes in size. As the address is word aligned, such pointers
can reach program memory addresses up to 128kB. If the device you are using sup-
ports more than this amount of program memory and you wish to indirectly access rou-
tines above this address, then you need to use the -mrelax option (see
Section 2.7.1.6 “relax”), which maintain the size of the pointer, but will instruct the linker
to have calls reach their final destination via lookups.

Note: Care must be taken when describing pointers. Is a “const pointer” a pointer
that points to const objects, or a pointer that is const itself? You can talk
about “pointers to const” and “const pointers” to help clarify the definition,
but such terms might not be universally understood.
DS50002750A-page 60  2012-2018 Microchip Technology Inc.

C Language Features
In order to facilitate indirect jump on devices with more than 128 Ki bytes of program
memory space, there is a special function register called EIND that serves as most sig-
nificant part of the target address when eicall or eijmp instructions are executed.
The compiler might also use this register in order to emulate an indirect call or jump by
means of a ret instruction.
The compiler never sets the EIND register and assumes that it never changes during
the startup code or program execution, and this implies that the EIND register is not
saved or restored in function or interrupt service routine prologues or epilogues.
To accommodate indirect calls to functions and computed gotos, the linker generates
function stubs, or trampolines, that contain direct jumps to the desired addresses. Indi-
rect calls and jumps are made to the stub, which then redirects execution to the desired
function or location.
For the stubs to work correctly, the -mrelax option must be used. This option ensures
that the linker will use a 16-bit function pointer and stub combination, even though the
destination address might be above 128 kB.
The default linker script assumes code requires the EIND register contain zero. If this
is not the case, a customized linker script must be used in order to place the sections
whose name begin with .trampolines into the segment appropriate to the value held
by the EIND register.
The startup code from the libgcc.a library never sets the EIND register.
It is legitimate for user-specific startup code to set up EIND early, for example by means
of initialization code located in section .init3. Such code runs prior to general startup
code that initializes RAM and calls constructors, but after the AVR-LibC startup code
that sets the EIND register to a value appropriate for the location of the vector table.
#include <avr/io.h>

static void
__attribute__((section(".init3"),naked,used,no_instrument_function))
init3_set_eind (void)
{
 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
}

The __trampolines_start symbol is defined in the linker script.
Stubs are generated automatically by the linker, if the following two conditions are met:
• The address of a label is taken by means of the gs assembler modifier (short for

generate stubs) like so:
LDI r24, lo8(gs(func))
LDI r25, hi8(gs(func))

• The final location of that label is in a code segment outside the segment where the
stubs are located.

The compiler emits gs modifiers for code labels in the following situations:
• When taking the address of a function or code label
• When generating a computed goto
• If the prologue-save function is used (see Section 2.7.1.2 “call-prologues”)
• When generating switch/case dispatch tables (these can be inhibited by specify-

ing the -fno-jump-tables option, Section 2.7.1.5 “no-jump-tables”)
• C and C++ constructors/destructors called during startup/shutdown
 2012-2018 Microchip Technology Inc. DS50002750A-page 61

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Jumping to absolute addresses is not supported, as shown in the following example:
int main (void)
{
 /* Call function at word address 0x2 */
 return ((int(*)(void)) 0x2)();
}

Instead, the function has to be called through a symbol (func_4 in the following exam-
ple) so that a stub can be set up:
int main (void)
{
 extern int func_4 (void);

 /* Call function at byte address 0x4 */
 return func_4();
}

The project should be linked with -Wl,--defsym,func_4=0x4. Alternatively,
func_4 can be defined in the linker script.

3.4.7 Constant Types and Formats
Constants in C are an immediate value that can be specified in several formats that are
assigned a type.

3.4.7.1 INTEGRAL CONSTANTS

The format of integral constants specifies their radix. MPLAB XC8 supports the stan-
dard radix specifiers, as well as ones which enables binary constants to be specified in
C code.
The formats used to specify the radices are given in Table 3-5. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

Any integral constant will have a type of int, long int or long long int, so that
the type can hold the value without overflow. Constants specified in octal or hexadeci-
mal can also be assigned a type of unsigned int, unsigned long int or
unsigned long long int if their signed counterparts are too small to hold the
value.

TABLE 3-5: RADIX FORMATS
Radix Format Example

binary 0bnumber or 0Bnumber 0b10011010

octal 0number 0763

decimal number 129

hexadecimal 0xnumber or 0Xnumber 0x2F
DS50002750A-page 62  2012-2018 Microchip Technology Inc.

C Language Features
The default types of constants can be changed by the addition of a suffix after the digits;
e.g., 23U, where U is the suffix. Table 3-6 shows the possible combination of suffixes
and the types that are considered when assigning a type. So, for example, if the suffix
l is specified and the value is a decimal constant, the compiler will assign the type
long int, if that type will hold the constant; otherwise, it will assigned long long
int. If the constant was specified as an octal or hexadecimal constant, then unsigned
types are also considered.

Here is an example of code that can fail because the default type assigned to a
constant is not appropriate:
unsigned long int result;
unsigned char shifter;

shifter = 20;
result = 1 << shifter;

The constant 1 (one) will be assigned an int type, hence the value 1 shifted left 20 bits
will yield the result 0, not 0x100000.
The following uses a suffix to change the type of the constant, hence ensure the shift
result has an unsigned long type.

result = 1UL << shifter;

3.4.7.2 FLOATING-POINT CONSTANT

Floating-point constants have double type unless suffixed by f or F, in which case it
is a float constant. The suffixes l or L specify a long double type which is
considered an identical type to double by MPLAB XC8.
Floating point constants can be specified as decimal digits with a decimal point and/or
an exponent, or as hexadecimal digits and a binary exponent, initiated with either p or
P. So for example:
myFloat = -123.98E12;
myFloat = 0xFFEp-22;

TABLE 3-6: SUFFIXES AND ASSIGNED TYPES
Suffix Decimal Octal or Hexadecimal

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int

long int
unsigned long int
long long int
unsigned long long int

u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int long long int
unsigned long long int

u or U, and ll or LL unsigned long long int unsigned long long int
 2012-2018 Microchip Technology Inc. DS50002750A-page 63

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.4.7.3 CHARACTER AND STRING CONSTANTS

Character constants are enclosed by single quote characters, ’, for example ’a’. A
character constant has int type, although this can be later optimized to a char type
by the compiler.
To comply with the C standard, the compiler does not support the extended character
set in characters or character arrays. Instead, they need to be escaped using the back-
slash character. For example:
const char name[] = "Bj\370rk";
printf("%s's Resum\351", name); \\ prints "Bjørk's Resumé"

Multi-byte character constants are not supported by this implementation.
String constants, or string literals, are enclosed by double quote characters. For exam-
ple, “hello world.” The type of string constants is char *. The characters that make
up the string are stored in data memory, as are all objects qualified const.

3.4.8 Standard Type Qualifiers
The compiler supports the standard qualifiers const and volatile, as well additional
qualifiers that allow programs take advantage of the 8-bit AVR MCU architecture.

3.4.8.1 CONST TYPE QUALIFIER

The const type qualifier is used to tell the compiler that an object is read only and will
not be modified. If any attempt is made to modify an object declared const, the
compiler will issue a warning or error.

3.4.8.2 VOLATILE TYPE QUALIFIER

The volatile type qualifier indicates to the compiler that an object cannot be guar-
anteed to retain its value between successive accesses. This information prevents the
optimizer from eliminating apparently redundant references to objects declared
volatile because these references might alter the behavior of the program.
Any SFR which can be modified by hardware or which drives hardware is qualified as
volatile, and any variables which can be modified by interrupt routines should use
this qualifier as well. For example:
volatile static unsigned int TACTL __at(0x800160);

The volatile qualifier does not guarantee that any access will be atomic, which is
often not the case since the 8-bit AVR architecture can typically access 1 byte of data
per instruction.
The code produced by the compiler to access volatile objects can be different of
that to access ordinary variables and typically the code will be longer and slower for
volatile objects, so only use this qualifier if it is necessary. Failure to use this qual-
ifier when it is required can lead to code failure.
A common use of the volatile keyword is to prevent unused some variables being
removed. If a non-volatile variable is never used, or used in a way that has no
effect, then it can be removed before code is generated by the compiler.
A C statement that consists only of a volatile variable’s name will produce code that
reads the variable’s memory location and discards the result. For example, the entire
statement, PORTB; will produce assembly code the reads PORTB.
DS50002750A-page 64  2012-2018 Microchip Technology Inc.

C Language Features
3.4.9 Special Type Qualifiers
The MPLAB XC8 C Compiler supports special type qualifiers to allow the user to control
placement of objects with static storage duration into particular address spaces.

3.4.9.1 __MEMX ADDRESS SPACE QUALIFIER

The __memx qualifier indicates that the object or the object referenced in the case of
pointers is to be accessed via a 24-bit address that can access both program and data
memory. This qualifier is not needed when compiling for any device with no separate
address spaces, such as the ATtiny40 that maps the program memory into its data
memory space.
This address linearizes flash and RAM, using the high bit of the address to determine
which memory space is being accessed. If the MSb is set, the object is accessed from
data memory using the lower two bytes as address. If the MSb of the address is clear,
data is accessed from program memory, with the RAMPZ segment register set accord-
ing to the high byte of the address.
The function in the following example uses a pointer with this qualifier to indicate that
it can be passed the address of objects in any memory space.
int readOff(__memx int * ip) { ... }

3.4.9.2 __FLASH

The __flash qualifier indicates that the object should be located in the program mem-
ory. For devices that do not have memory-mapped flash, data is read using the lpm
instruction.

3.4.9.3 __FLASHN

The __flashn qualifier, where n can range from 1 thru 5, places the object into pro-
gram memory. For those devices that do not have memory-mapped flash (where appli-
cable), the RAMPZ register is accessed using the elpm instruction, allowing access to
the full program memory.

3.4.10 Attributes
The compiler keyword __attribute__() allows you to specify special attributes of
objects or structure fields. Place inside the parentheses following this keyword a
comma-separated list of the relevant attributes, for example:
__attribute__ ((unused))

The attribute can be placed anywhere in the object’s definition, but is usually placed as
in the following example.
char __attribute__((weak)) input;
char input __attribute__((weak));

3.4.10.1 ABSDATA

The absdata attribute indicates that the objects can be accessed by the lds and sts
instructions, which take absolute addresses. This attribute is only supported for the
reduced AVR Tiny core like ATtiny40.
You must make sure that respective data is located in the address range 0x40-0xbf to
prevent out of range errors. One way to achieve this as an appropriate linker descrip-
tion file.

Note: It is important to use variable attributes consistently throughout a project.
For example, if a variable is defined in file A with the aligned attribute, and
declared extern in file B without aligned, then a link error may result.
 2012-2018 Microchip Technology Inc. DS50002750A-page 65

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.4.10.2 ADDRESS

Variables with the address(addr) attribute are used to address memory-mapped
peripherals that may lie outside the io address range.
volatile int porta __attribute__((address (0x600)));

To place objects at a specified address in the ordinary data memory, use the __at()
specifier (see Section 3.5.4 “Absolute Variables”).

3.4.10.3 ALIGNED

The aligned(n) attributed aligns the object’s address with the next n-byte boundary,
where n is an numerical argument to the attribute. If the CCI is enabled (see
Section 2.7.3.7 “ext”) a more portable macro, __align(n) (note the different spell-
ing), is available.
This attribute can also be used on a structure member. Such a member will be aligned
to the indicated boundary within the structure.
If the alignment argument is omitted, the alignment of the variable is set to 1 (the largest
alignment value for a basic data type).
Note that the aligned attribute is used to increase the alignment of a variable, not
reduce it. To decrease the alignment value of a variable, use the packed attribute.

3.4.10.4 DEPRECATED

The deprecated attribute generates a warning whenever the specified object is used.
If an option string argument is present, it will be printed in the warning. If the CCI is
enabled (see Section 2.7.3.7 “ext”) a more portable macro, __deprecate (note the
different spelling), is available.

3.4.10.5 IO

Objects defined using the io(address) attribute represent memory-mapped periph-
erals in the I/O space and at the address indicated. Example:
volatile int porta __attribute__((io(0x22)));

When used without an address, the object it is not assigned an address, but the com-
piler will still use in and out instructions where applicable, assuming some other mod-
ule will assign the object an address. For example:
extern volatile int porta __attribute__((io));

3.4.10.6 IO_LOW

The io_low(address) attribute is similar the io(address) attribute, but addition-
ally it informs the compiler that the object lies in the lower half of the I/O area, allowing
the use of cbi, sbi, sbic and sbis instructions. This attribute also has an io_low
form, which does not specify an address.

3.4.10.7 PACKED

The packed attribute forces the object or structure member to have the smallest pos-
sible alignment. If the CCI is enabled (see Section 2.7.3.7 “ext”) a more portable
macro, __pack (note the different spelling), is available.
That is, no alignment padding storage will be allocated for the declaration. Used in com-
bination with the aligned attribute, packed can be used to set an arbitrary alignment
restriction greater or lesser than the default alignment for the type of the variable or
structure member.
DS50002750A-page 66  2012-2018 Microchip Technology Inc.

C Language Features
3.4.10.8 __PERSISTENT

The __persistent attribute is used to indicate that objects should not be cleared by
the runtime startup code by having them stored in a different area of memory to other
objects. If the CCI is enabled (see Section 2.7.3.7 “ext”) a more portable macro,
__persistent, is available.
By default, C objects with static storage duration that are not explicitly initialized are
cleared on startup. This is consistent with the definition of the C language. However,
there are occasions where it is desired for some data to be preserved across a Reset.
For example, the following CCI-compliant code ensures that the variable, intvar, is
not cleared at startup:
void test(void)
{
 static __persistent int intvar; /* must be static */
 // ...
}

3.4.10.9 PROGMEM

The progmem attribute can be used to have objects placed in the program memory;
however, you can use the more portable PROGMEM macro, defined by
<avr/pgmspace.h>, which maps to this attribute, For example.
#include <avr/pgmspace.h>
const unsigned char PROGMEM romChar = 0x55;

Note that the object must be qualified as const for it to be placed in this read-only area
of memory.

3.4.10.10 __SECTION

The __section(section) attribute allocates the object to a user-nominated section
rather than allowing the compiler to place it in a default section. If the CCI is enabled
(see Section 2.7.3.7 “ext”) a more portable macro, __section(section), is avail-
able. See Section 3.15.2 “Changing and Linking the Allocated Section” for full informa-
tion on the use of this qualifier.
For example, the following CCI-compliant code places foobar in a unique section
called myData:
int __section("myData") foobar;

3.4.10.11 UNUSED

The unused attribute indicates to the compiler that the object might not be used and
that no warnings should be produced if it is detected as being unused.
 2012-2018 Microchip Technology Inc. DS50002750A-page 67

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.4.10.12 WEAK

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol indicates that if a global version of the same symbol is available, that version
should be used instead.
When weak is applied to a reference to an external symbol, the symbol is not required
for linking. For example:
extern int __attribute__((weak)) s;
int foo(void) {
 if (&s)
 return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still
link but s will not be given an address. The conditional verifies that s has been defined
(and returns its value if it has). Otherwise '0' is returned. There are many uses for this
feature, mostly to provide generic code that can link with an optional library.

3.5 MEMORY ALLOCATION AND ACCESS
Objects you define are automatically allocated to an area of memory that is determined
by how and where the object is defined in your program. In some instances, it is possi-
ble to alter this allocation. Both these topics are discussed in the following sections.

3.5.1 Address Spaces
Most 8-bit AVR devices have a Harvard architecture, which has a separate data mem-
ory (RAM) and program memory space. On some devices, the program memory is
mapped into and accessible from the data memory space. Some devices also imple-
ment EEPROM, which is memory mapped on some devices.
Both the general purpose RAM and SFRs share the same data space; however, SFRs
appear in a range of addresses (called the I/O space in the device data sheets) that can
be accessed by instructions that access the I/O space, such as the in and out instruc-
tions. If a device has more SFRs than these instructions can address, the registers are
located at a higher address and accessed via the st and ld group of instructions.
The program memory space is primarily for executable code, but data can also be
located here. There are several ways the different device families locate and read data
from this memory, but all objects located here will be read-only.

3.5.2 Objects in Data Space Memory
Most objects are ultimately positioned into the data space memory.
Due to the fundamentally different way in which stack-based (automatic storage dura-
tion) an other objects (static storage duration) are allocated memory, they are dis-
cussed separately.

Note: The terms “local” and “global” are commonly used to describe variables, but
are not ones defined by the language Standard. Variables in the C language
are characterized by their storage duration, scope, and linkage.
DS50002750A-page 68  2012-2018 Microchip Technology Inc.

C Language Features
3.5.2.1 STATIC STORAGE DURATION OBJECTS

Objects which are not allocated space on a stack (all objects excluding auto, param-
eter and const-qualified objects) have a static (permanent) storage duration and are
located by the compiler into the data memory.
Allocation is performed in two steps. The compiler places each object into a specific
section and then the linker places these sections into the relevant memory areas. After
placement, the addresses of the objects in those sections can be fully resolved.
The compiler considers three categories of these object, which all relate to the value
the object should contain at the time the program begins. Each object category has a
corresponding family of sections (see Section 3.15.1 “Compiler-Generated Psects”),
which are tabulated below.

bss These sections contain any uninitialized objects, which will be cleared
by the runtime startup code.

data These sections contain the RAM image of initialized objects, whose
non-zero value is copied to them by the runtime startup code.

Section 3.10 “Main, Runtime Startup and Reset” has information on how the runtime
startup code operates.

3.5.2.1.1 Static Variables
All static objects have static storage duration, even local static objects defined inside
a function have a scope limited to that function. Even local static objects can be refer-
enced by a pointer and are guaranteed to retain their value between calls to the
function in which they are defined, unless explicitly modified via a pointer.
Objects which are static have their initial value assigned only once during the pro-
gram’s execution. Thus, they can be preferable over initialized auto objects which are
assigned a value every time the block in they are defined begins execution.

3.5.2.1.2 Object Size Limits
An object with static storage duration cannot be made larger than the available device
memory size.

3.5.2.1.3 Changing the Default Allocation
You can change the default memory allocation of objects with static storage duration
by either:
• Using specifiers
• Making the objects absolute
• Placing objects in their own section and explicitly linking that section
Variables can be placed in a combined flash and data section by using the __memx
specifier (see Section 3.4.9.1 “__memx Address Space Qualifier”).
If only a few objects are to be located at specific addresses in data space memory, then
those objects can be made absolute (described in Section 3.5.4 “Absolute Variables”).
Once variables are made absolute, their address is hard coded in generated output
code, they are no longer placed in a section and do not follow the normal memory allo-
cation procedure.
The .bss and .data sections, in which the different categories of static storage dura-
tion objects are allocated, can be shifted as a whole by changing the default linker
options. For example, you could move all the persistent variables. See
Section 3.15.2 “Changing and Linking the Allocated Section” for more information on
changing the default linker options for sections.
 2012-2018 Microchip Technology Inc. DS50002750A-page 69

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Objects can also be placed at specific positions by using the __section() specifier
(see Section 3.15.2 “Changing and Linking the Allocated Section”), to allocate them to
a unique section, then link that section to the required address via an option.

3.5.2.2 AUTOMATIC STORAGE DURATION OBJECTS

Parameters and auto objects have automatic storage duration and are allocated
space on a software stack1. Temporary objects might also be placed on the stack as
well. Section 3.3.4 “Stacks” describes the stack used by MPLAB XC8 and the 8-bit AVR
devices.
Since objects with automatic storage duration are not in existence for the entire execu-
tion of the program, there is the possibility to reclaim memory they use when the objects
are not in existence and allocate it to other objects in the program. Typically such
objects are stored on some sort of a dynamic data stack where memory can be easily
allocated and deallocated by each function. Because this stack is used to create new
instances of function objects when the function is called, all functions are reentrant.
The standard const qualifier can be used with auto objects and these do not affect
how they are positioned in memory. This implies that a local const-qualified object is
still an auto object and will be allocated memory in the stack of data space memory.

3.5.2.2.1 Object Size Limits
An object with automatic storage duration cannot be made larger than the stack space
available at the time which the object comes into existence. Therefore, the maximum
size can vary throughout the program.

3.5.2.2.2 Changing the Default Auto Variable Allocation
All objects with automatic storage duration are located on a stack, thus there is no
means to individually move them. They cannot be made absolute nor can they be
assigned a unique section.

3.5.3 Objects in Program Space
Objects defined using the progmem attribute or the PROGMEM macro and that have
static storage duration are placed in program memory.
The avrtiny and avrxmega3 device families can easily access program-memory
objects, since this memory is mapped into the data address space. For other device
families, program memory is distinct and is accessed via different code sequences.

3.5.3.1 SIZE LIMITATIONS OF PROGRAM-MEMORY OBJECTS

A program-memory object cannot be made larger than the available device program
memory size.
Note that in addition to the data itself, there is also a small amount of code required to
access data in program memory for those devices that do not have program memory
mapped into the data space. This additional code is included only once, regardless of
the size or number of program-memory objects.

1. What is referred to as a software stack in this user’s guide is the typical dynamic stack arrangement
employed by most computers. It is ordinary data memory accessed by some sort of push and pop
instructions, and a stack pointer register.
DS50002750A-page 70  2012-2018 Microchip Technology Inc.

C Language Features
3.5.3.2 CHANGING THE DEFAULT ALLOCATION

You can change the default memory allocation of objects in program memory by either:
• Making the objects absolute
• Placing objects in their own section and explicitly linking that section
If only a few program-memory objects are to be located at specific addresses in pro-
gram space memory, then the objects can be made absolute. Absolute variables are
described in Section 3.5.4 “Absolute Variables”.
Objects in program memory can also be placed at specific positions by using the
__section() specifier (see Section 3.15.2 “Changing and Linking the Allocated Sec-
tion”), to allocate them to a unique section, then link that section to the required address
via an option.

3.5.4 Absolute Variables
Objects can be located at a specific address when the CCI is enabled (see
Section 2.7.3.7 “ext”) by following their declaration with the construct
__at(address), where address is the location in memory where the variable is to
be positioned. Such a variable is known as an absolute variable.
Making a variable absolute is the easiest method to place an object at a user-defined
location, but it only allows placement at an address which must be known prior to com-
pilation and must be specified for each object to be relocated.

3.5.4.1 ABSOLUTE OBJECTS IN DATA MEMORY

Any object which has static storage duration and which has file scope can be placed at
an absolute address in data memory when the CCI is enabled (see
Section 2.7.3.7 “ext”). Thus all but auto objects can be made absolute.
The address specified for data memory objects must be 0x800000 plus the RAM start
address plus the desired offset within the RAM block. So, for example, to place the vari-
able Portvar at an offset of 0x60 in the RAM block (data address 0x160) for an ATme-
ga48PB device, use:
volatile unsigned char Portvar __at(0x800160);

The compiler will mark storage for absolute objects as being used, so that ordinary
object will not be assigned these addresses. An error will be issued if there is any over-
lap of absolute variables with other absolute variables.

3.5.4.2 ABSOLUTE OBJECTS IN PROGRAM MEMORY

Any program-memory object which has static storage duration and which has file scope
can be placed at an absolute address in program memory when the CCI is enabled
(see Section 2.7.3.7 “ext”).
For example:
#include <avr/pgmspace.h>
int PROGMEM settings[] __at(0x200) = { 1, 5, 10, 50, 100 };

will place the array settings at address 0x200 in the program memory.

Note: Defining absolute objects can fragment memory and can make it impossi-
ble for the linker to position other objects. If absolute objects must be
defined, try to place them at either end of a memory bank so that the
remaining free memory is not fragmented into smaller chunks.
 2012-2018 Microchip Technology Inc. DS50002750A-page 71

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.5.5 Variables in EEPROM
For devices with on-chip EEPROM, the compiler offers several methods of accessing
this memory as described in the following sections.

3.5.5.1 EEPROM VARIABLES

Objects can be placed in the EEPROM by specifying that they be placed in the
.eeprom section, using the section attribute. A warning is produced if the attribute
is not supported for the selected device. Check your device data sheet to see the mem-
ory available with your device.
The macro, EEMEM, is defined in <avr/eeprom.h> and can be alternatively used to
simplify the definition of objects in EEPROM. For example, both the following defini-
tions create objects which will be stored in EEPROM.
int serial __attribute__((section(.eeprom)));
char EEMEM ID[5] = { 1, 2, 3, 4, 5 };

Objects in this section are cleared or initialized, as required, just like ordinary
RAM-based objects; however, the initialization process is not carried out by the runtime
startup code. Initial values are placed into a HEX file and are burnt into the EEPROM
when you program the device. If you modify the EEPROM during program execution
and then reset the device, these objects will not contain the initial values specified in
your code at startup up.
Note that the objects that are in the eeprom section must all use the const type qual-
ifier or all not use this qualifier.

3.5.5.2 EEPROM ACCESS FUNCTIONS

You must access objects in EEPROM using special library routines, such as
eeprom_read_byte() and eeprom_write_word(), accessible once you include
<avr/eeprom.h>.
Code to access EEPROM based objects will be much longer and slower than code to
access RAM-based objects. Consider using these routines to copy values from the
EEPROM to regular RAM-based objects if you need to use them many times in com-
plex calculations.

3.5.6 Variables in Registers
You can define a variable and associate it with a specified register; however, it is gen-
erally recommended that register allocation be left to the compiler to achieve optimal
results and to avoid code failure.
Register variables are defined by using the register keyword and indicating the
desired register, as in the following example:
register int input asm("r12");

A valid AVR device register name must be quoted as an argument to the asm(). Such
a definition can be placed inside or outside a function, but you cannot made the variable
static. Support for local register variables is to limited to specifying registers for input
and output operands when calling extended in-line assembly.
The compiler reserves the allocated register for the duration of the current compilation
unit, but library routines may clobber the register allocated, thus it is recommended that
you allocate a register that is normally saved and restored by function calls (a
call-saved register, described in Section 3.7 “Register Usage”).
You cannot take the address of a register variable.
DS50002750A-page 72  2012-2018 Microchip Technology Inc.

C Language Features
3.5.7 Dynamic Memory Allocation
Dynamic memory allocated from a heap at runtime (by functions like malloc() etc) is
supported by MPLAB XC8. Given the small amounts of data memory available on the
AVR architecture, the allocation scheme is relatively robust.
The memory allocated by dynamic memory functions includes an addition
two-byte-wide header that is prepended to the requested memory. This header records
the size of the allocation and is used by free(). The address returned by the memory
allocation functions point to the first usable location that has been allocated. The two
bytes located before this address contain the header, so your program should take
extra care to ensure these locations are not corrupted.
The implementation maintains a simple freelist that accounts for memory regions that
have been returned in previous calls to free(). Note that all of this memory is consid-
ered to have been successfully added to the heap, so no further checks against
stack-heap collisions are done when recycling memory from the freelist.
The freelist itself is not maintained as a separate data structure. The contents of the
freed memory regions are written with pointers which link the regions. This requires no
additional memory to maintain this list, except for a link pointer, which contains the
address of the lowest memory region available for reallocation. Since the size of the
region (the two-byte header) and a two-byte link pointer to the next free region are
recorded in each region, the minimum region size on the freelist is four bytes.
When allocating memory, the linked memory regions in the freelist are first walked to
determine if this contains a memory region that satisfies the request. Regions with the
same usable size as that requested are allocated first; otherwise, larger regions are
considered, if they are available. If a larger free region has at least four bytes more than
that requested, it is split into one region which is returned by the allocation function and
the remaining region is left on the free list. If splitting the larger free region would result
in a region on the freelist that is less than four bytes in size (i.e. not large enough to
hold the header information and link pointer), the larger region is not split and is allo-
cated as a whole.
If no suitable memory region could be found on the freelist, the allocation functions
attempt to extend the heap. If the heap is located below the stack, memory will be allo-
cated up to a maximum address of the current stack limit minus__malloc_margin
bytes, which by default is 32 bytes. If the heap is above the stack, memory will be allo-
cated up to a maximum address of __malloc_heap_end.
If no memory can be claimed from the heap, the allocation functions will return NULL.
When calling free(), a new region will be placed on the freelist. This region will be
combined with other contiguous regions, yielding the largest possible entry for further
allocations. That way, the heap fragmentation can be minimized. When deallocating
the topmost chunk of memory, the size of the heap is reduced.
A call to realloc() first determines whether the operation should increase or
decrease the size of the existing allocation. If the new request is for a region at least
two bytes smaller than the current region, the existing region is split and the region no
longer required is passed to the standard free() function for insertion into the freelist.
If the new request is for a region one byte smaller than the existing region, no operation
is performed and the existing region is returned.
When a request to realloc() is for a larger memory region, the existing allocation is
extended in-place, if possible, without having to copy data to the new region. As a
side-effect, this check will also record the size of the largest chunk on the freelist.
 2012-2018 Microchip Technology Inc. DS50002750A-page 73

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
If the existing region cannot be extended in-place, but is located at the top of heap with
no suitable regions in the freelist, the heap is extended (if possible) without having to
copy data to the new region. Otherwise, malloc() will be called with the new request
size, the data in the existing region will be copied over to the new region, and free()
will be called on the now defunct region.
The request will fail if the top of the heap would surpass its maximum permissible
address.

3.5.7.1 ADJUSTING ALLOCATION FUNCTION BEHAVIOR

There are a number of variables that can be tuned to customize the behavior of func-
tions such as malloc(). Any changes to these variables should be made before any
memory allocation is made, remembering that library functions might use dynamic
memory.
The variables __malloc_heap_start and __malloc_heap_end can be used to
restrict the memory allocated by the malloc() function. These variables are statically
initialized to point to __heap_start and __heap_end, respectively, where
__heap_start is set to an address just beyond the .bss section, and __heap_end
is set to 0, which places the heap is below the stack.
If the heap is located in external RAM, __malloc_heap_end must be adjusted
accordingly. This can be done either at run-time, by writing directly to this variable, or
it can be done automatically at link-time, by adjusting the value of the symbol
__heap_end.
The following example shows an option that can relocate those input sections mapped
to the .data output section in the linker script to location 0x1100 in external RAM. (The
option -Wl,-Tdata=0x801100 could also be used in this situation). The heap will
extend up to address 0xffff.
-Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff

Since these are addresses in RAM, the MSb is set in the address.
If the heap should be located in external RAM while keeping the ordinary variables in
internal RAM, the following options can be used. Note that in this example, there is a
’hole’ in memory between the heap and the stack that remain unaccessible by ordinary
variables or dynamic memory allocations.
-Wl,--defsym=__heap_start=0x802000,--defsym=__heap_end=0x803fff

Figure 3. Internal RAM: variables and stack, external RAM: heap
If __malloc_heap_end is 0, the memory allocation routines attempt to detect the bot-
tom of the stack in order to prevent a stack-heap collision when extending the heap.
They will not allocated memory beyond the current stack limit with a buffer of
__malloc_margin bytes. Thus, all possible stack frames of interrupt routines that
could interrupt the current function, plus all further nested function calls must not
require more stack space, or they will risk colliding with the data segment.
The default value of __malloc_margin is set to 32.

3.5.8 Memory Models
MPLAB XC8 C Compiler does not use fixed memory models to alter allocation of vari-
ables to memory. Memory allocation is fully automatic and there are no memory model
controls.
DS50002750A-page 74  2012-2018 Microchip Technology Inc.

C Language Features
3.6 OPERATORS AND STATEMENTS
The MPLAB XC8 C Compiler supports all the Standard operators, some of which
behave in an implementation defined way, see Appendix B. Implementation-Defined
Behavior. The following sections illustrate code operations that are often misunder-
stood as well as additional operations that the compiler is capable of performing.

3.6.1 Integral Promotion
Integral promotion is always applied in accordance with the C standard, but it can con-
fuse those who are not expecting such behavior.
When there is more than one operand to an operator, they typically must be of exactly
the same type. The compiler will automatically convert the operands, if necessary, so
they have the same type. The conversion is to a “larger” type so there is no loss of
information; however, the change in type can cause different code behavior to what is
sometimes expected. These form the standard type conversions.
Prior to these type conversions, some operands are unconditionally converted to a
larger type, even if both operands to an operator have the same type. This conversion
is called integral promotion. The compiler performs these integral promotions where
required, and there are no options that can control or disable this operation.
Integral promotion is the implicit conversion of enumerated types, signed or
unsigned varieties of char, short int or bit-field types to either signed int or
unsigned int. If the result of the conversion can be represented by an signed int,
then that is the destination type, otherwise the conversion is to unsigned int.
Consider the following example.
unsigned char count, a=0, b=50;
if(a - b < 10)
 count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and
b are converted to signed int via integral promotion before the subtraction takes
place. The result of the subtraction with these data types is -50 (which is less than 10)
and hence the body of the if() statement is executed.
If the result of the subtraction is an unsigned quantity, then apply a cast, as in the fol-
lowing example, which forces the comparison to be done as unsigned int types:
if((unsigned int)(a - b) < 10)
 count++;

Another problem that frequently occurs is with the bitwise complement operator, ~. This
operator toggles each bit within a value. Consider the following code.
unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
 count++;
 2012-2018 Microchip Technology Inc. DS50002750A-page 75

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
If c contains the value 0x55, it often assumed that ~c will produce 0xAA; however, the
result is 0xFFAA and so the comparison in the above example would fail. The compiler
can be able to issue a mismatched comparison error to this effect in some
circumstances. Again, a cast could be used to change this behavior.
The consequence of integral promotion as illustrated above is that operations are not
performed with char-type operands, but with int-type operands. However, there are
circumstances when the result of an operation is identical regardless of whether the
operands are of type char or int. In these cases, the compiler might not perform the
integral promotion so as to increase the code efficiency. Consider this example.
unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c are promoted to
unsigned int, the addition is performed, the result of the addition is cast to the type
of a, and then that result is assigned. In this case, the value assigned to a will be the
same whether the addition is performed as an int or char, and so the compiler can
choose to encode the operands using the latter type.
If, in the above example, the type of a was unsigned int, then integral promotion
would have to be performed to comply with the C Standard.

3.6.2 Rotation
The C language does not specify a rotate operator; however, it does allow shifts. You
can follow the C code examples below to perform rotations.
unsigned char c;
unsigned int u;
c = (c << 1) | (c >> 7); // rotate left, one bit
u = (u >> 2) | (u << 14); // rotate right, two bits

3.6.3 Switch Statements
By default, jump tables can be used to optimize switch() statements. The
-fno-jump-tables option prevents these from being used and will use sequences
of compare statements instead. Jump tables are usually faster to execute on average,
but in particular for switch() statements, where most of the jumps would go to the
default label, they might waste a bit of flash memory.
The jump tables use the lpm assembler instruction for access to jump tables. Always
use the -fno-jump-tables option when compiling a bootloader for devices with
more than 64 kB of program memory.
DS50002750A-page 76  2012-2018 Microchip Technology Inc.

C Language Features
3.7 REGISTER USAGE
The assembly generated from C source code by the compiler will use certain registers
in the AVR register set. Some registers are assumed to hold their value over a function
call.
The call-used registers, r18-r27 and r30-r31, can be allocated by the compiler for val-
ues within a function. Functions do not need to preserve the content of these registers.
These registers may be used in hand-written assembler subroutines. Since any C func-
tion called by these routines can clobber these registers, the calling routine must
ensure they are saved as restored as appropriate.
The call-saved registers, r2-r17 and r28-r29, can also be allocated by the compiler for
local data; however, C functions must preserve these registers. Hand-written assem-
bler subroutines are responsible for saving and restoring these registers when neces-
sary. The registers must be saved even when the compiler has assigned them for
argument passing.
The temporary register, r0, can be clobbered by C functions, but they are saved by
interrupt handlers.
The compiler assumes that the Zero register, r1, always contains the value zero. It can
be used in hand-written assembly routine for intermediate values, but must be cleared
after use (e.g using clr r1). Be aware that multiplication instructions return their result
in the r1-r0 register pair. Interrupt handlers save and clear r1 on entry, and restore r1
on exit (in case it was non-zero).
All registers that have been used by an interrupt routine are save and restored by the
interrupt routine (see Section 3.9.4 “Context Switching”).
The registers that have a dedicated function throughout the program are listed in
Table 3-7.

TABLE 3-7: REGISTERS WITH DEDICATED USE
Register name Applicable devices

r0 Temporary register
r1 (__zero_reg__) Zero register (holds 0 value)
r28, r29 Frame pointer (Y pointer)
 2012-2018 Microchip Technology Inc. DS50002750A-page 77

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.8 FUNCTIONS
Functions are written in the usual way, in accordance with C language. Implementation
and special features associated with functions are discussed in following sections.

3.8.1 Function Specifiers
Aside from the standard C specifier, static, which affects the linkage of the function,
there are several non-standard function specifiers, which are described in the following
sections.

3.8.1.1 __INTERRUPT SPECIFIER

The __interrupt() specifier indicates that the function is an interrupt service routine
and that it is to be encoded specially to suit this task. Interrupt functions are described
in detail in 3.9.1 Writing an Interrupt Service Routine.

3.8.1.2 INLINE SPECIFIER

The inline function specifier is a recommendation that the compiler replace calls to
the specified function with the function’s body, if possible.
The following is an example of a function which has been made a candidate for inlining.
inline int combine(int x, int y) {
 return 2*x-y;
}

All function calls to a function that was in-lined by the compiler will be encoded as if the
call was replaced with the body of the called function. This is performed at the assembly
code level. In-lining will only take place if the optimizers are enabled, but you can ask
that a function always be in-lined by using the always_inline attribute.
If inlining takes place, this will increase the program’s execution speed, since the call
and return sequences associated with the call will be eliminated. Code size can be
reduced if the assembly code associated with the body of the in-lined function is very
small, but code size can increase if the body of the in-lined function is larger than the
call/return sequence it replaces. You should only consider this specifier for functions
which generate small amounts of assembly code. Note that the amount of C code in
the body of a function is not a good indicator of the size of the assembly code that it
generates.
There are several reasons why the compiler might not in-line a function which has been
specified, so your code should not make any assumption about whether inlining took
place. The -Winline option can warn you when a function marked in-line could not
be substituted, and gives the reason for the failure.

3.8.1.3 __SECTION QUALIFIER

The __section(section) qualifier allocates the function to a user-nominated sec-
tion rather than allowing the compiler to place it in a default section. See
Section 3.15.2 “Changing and Linking the Allocated Section” for full information on the
use of this qualifier.
DS50002750A-page 78  2012-2018 Microchip Technology Inc.

C Language Features
3.8.2 Function Attributes

3.8.2.1 NAKED

The naked attribute allows the compiler to construct the requisite function declaration,
while allowing the body of the function to be assembly code. The specified function will
not have prologue or epilogue sequences generated by the compiler. Only basic asm
statements can safely be included in naked functions. Do not use extended asm or a
mixture of basic asm and C code as they are not supported.

3.8.2.2 OS_MAIN AND OS_TASK

On AVR, functions with the OS_main or OS_task attribute do not save/restore any
call-saved register in their prologue/epilogue.
The OS_main attribute can be used when there is guarantee that interrupts are dis-
abled at the time when the function is entered. This saves resources when the stack
pointer has to be changed to set up a frame for local variables.
The OS_task attribute can be used when there is no guarantee that interrupts are dis-
abled at that time when the function is entered like for, e.g. task functions in a
multi-threading operating system. In that case, changing the stack pointer register is
guarded by save/clear/restore of the global interrupt enable flag.
The differences to the naked function attribute are:
• naked functions do not have a return instruction whereas OS_main and OS_task

functions have a RET or reti return instruction.
• naked functions do not set up a frame for local variables or a frame pointer

whereas OS_main and OS_task do this as needed.

3.8.2.3 WEAK

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol indicates that if a global version of the same symbol is available, that version
should be used instead. This is useful when a library function is implemented such that
it can be overridden by a user written function.
For example:
int __attribute__((weak)) process(int control)
{
 // ...
}

 2012-2018 Microchip Technology Inc. DS50002750A-page 79

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.8.3 External Functions
Functions that are defined outside the projects C source files (e.g., a function defined
in a separate bootloader project or in an assembly module) will require declarations so
that the compiler knows how to encode calls to those functions.
A function declaration will look similar to the following example. Note that the extern
specifier is optional, but make it clear this is a declaration.
extern int clockMode(int);

3.8.4 Allocation of Executable Code
Code associated with C functions is always placed in the .text section, which is linked
into the program memory of the target device.

3.8.5 Changing the Default Function Allocation
You can change the default memory allocation of functions by either:
• Making functions absolute
• Placing functions in their own section and linking that section
The easiest method to explicitly place individual functions at a known address is to
make them absolute by using the __at(address) construct in a similar fashion to that
used with absolute variables. The CCI must be enabled for this syntax to be accepted
(see Section 2.7.3.7 “ext”)
The compiler will issue a warning if code associated with an absolute function overlaps
with code from other absolute functions. The compiler will not locate code associated
with ordinary functions over the top of absolute functions.
The following example of an absolute function will place the function at address 400h:
int mach_status(int mode) __at(0x400)
{
 /* function body */
}

If this construct is used with interrupt functions, it will only affect the position of the code
associated with the interrupt function body. The interrupt context switch code associ-
ated with the interrupt vector will not be relocated.
Functions can be allocated to a user-defined psect using the __section() specifier
(see Section 3.15.2 “Changing and Linking the Allocated Section”) so that this new
section can then be linked at the required location. This method is the most flexible and
allows functions to be placed at a fixed address, after other section, or anywhere in an
address range. As with absolute functions, when used with interrupt functions, it will
only affect the position of the interrupt function body.
Regardless of how a function is located, take care choosing its address. If possible,
avoid fragmenting memory and increasing the possibility of linker errors.

3.8.6 Function Size Limits
For all devices, the code generated for a regular function is limited only by the available
program memory. See 3.8.4 Allocation of Executable Code for more details.
DS50002750A-page 80  2012-2018 Microchip Technology Inc.

C Language Features
3.8.7 Function Parameters
MPLAB XC8 uses a fixed convention to pass arguments to a function. The method
used to pass the arguments depends on the size and number of arguments involved.

Arguments are passed to functions via registers and consume as many register as
required to hold the object. However, registers are allocated in pairs, thus there will be
at least two registers allocated to each argument, even if the argument is a single byte.
This make more efficient use of the AVR instruction set.
The first register pair available is r24-r25 and lower register pairs are considered after
that down to register r8. For example, if a function with the prototype:
int map(unsigned long a, char b);

is called, the argument for the four-byte parameter a will be passed in registers r22 thru
r25, with r22 holding the least significant byte and r25 holding the most significant byte;
and the argument for parameter b will be assigned to registers r20 and r21.
If there are further arguments to pass once all the available registers have been
assigned, they are passed on the stack.
Arguments to functions with variable argument lists (printf() etc.) are all passed on
stack.

3.8.8 Function Return Values
A function’s return value is usually returned in a register.
A byte-sized return value is returned in r24. Multi-byte return values are return in as
many registers as required, with the highest register being r25. Thus, a 16-bit value is
returned in r24-r25, a 32-bit value in r22-r25, etc.

3.8.9 Calling Functions
Functions are called using an rcall instruction. If your target device has more than
8kB of program memory, it will use a larger call instruction to be able to reach any func-
tion, regardless of where it is located in program memory.
If you can guarantee that all call destinations are within range of the rcall instruction,
the shorter form of call can be requested by using the -mshort-calls option (see
Section 2.7.1.7 “short-calls”).

Note: The names “argument” and “parameter” are often used interchangeably,
but typically an argument is the value that is passed to the function and a
parameter is the variable defined by the function to store the argument.
 2012-2018 Microchip Technology Inc. DS50002750A-page 81

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.9 INTERRUPTS
The MPLAB XC8 compiler incorporates features allowing interrupts to be fully handled
from C code. Interrupt functions are often called Interrupt Service Routines, or ISRs.
The following are the general steps you need to follow to use interrupts. More detail
about these steps is provided in the sections that follow.
• Write as many interrupt functions as required. Consider one or more additional

functions to handle accidental triggering of unused interrupt sources.
• At the appropriate point in your code, enable the interrupt sources required.
• At the appropriate point in your code, enable the global interrupt flag.
Interrupt functions must not be called directly from C code (due to the different return
instruction used), but can call other functions, such as user-defined and library func-
tions.
Interrupt code is the name given to any code that executes as a result of an interrupt
occurring, including functions called from the ISR and library code. Interrupt code com-
pletes at the point where the corresponding return from interrupt instruction is exe-
cuted. This contrasts with main-line code, which, for a freestanding application, is
usually the main part of the program that executes after Reset.

3.9.1 Writing an Interrupt Service Routine
Observe the following guidelines when writing an ordinary ISR.
• Write each ISR prototype using the __interrupt() specifier. This will create a

function with the appropriate name, prototype, and attributes.
• If necessary, clear the relevant interrupt flag once the source has been processed,

although typically this is not required.
• Only re-enable interrupts inside the ISR body if absolutely necessary. Interrupt are

re-enabled automatically when the ISR returns.
• Keep the ISR as short and as simple as possible. Complex code will typically use

more registers that will increase the size of the context switch code.
The compiler will process interrupt functions differently to other functions, generating
code to save and restore any registers used by the function and using a special instruc-
tion to return.
The hardware globally disables interrupts when an interrupt is executed.
Usually, each interrupt source has a corresponding interrupt flag bit, accessible in a
control register. When set, these flags indicate that the specified interrupt condition has
been met. Interrupt flags are often cleared in the course of processing the interrupt,
either when the handler is invoked or by reading a particular hardware register; how-
ever, there are a few instances when the flag must be cleared manually by code. Fail-
ure to do so might result in the interrupt triggering again as soon as the current ISR
returns.
The flag bits in the SFRs have a unique property whereby they are cleared by writing
a logic one to them. To take advantage of this property, you should write directly to the
register rather than use any instruction sequence that might perform a read-mod-
ify-write. Thus to clear the TOV0 timer overflow flag in the TC0 interrupt flag register,
use the following code:
TIFR = _BV(TOV0);

which is guaranteed to clear the TOV0 bit and leave the remaining bits untouched.
DS50002750A-page 82  2012-2018 Microchip Technology Inc.

C Language Features
An example of an interrupt function is shown below.
void __interrupt(SPI_STC_vect_num) spi_Isr(void) {
 process(SPI_SlaveReceive());
 return;
}

Note that the argument to the __interrupt() specifier is a vector number, which are
available as macros ending with vect_num once you have included <xc.h> in your
program.
More complex interrupt function definitions can be created using macros and attributes
defined by <avr/interrupt.h> and which are shown in the following examples.
If there is no code to be executed for an interrupt source but you want to ensure that
the program will continue normal operation should the interrupt unexpectedly trigger,
then you can create an empty ISR using the EMPTY_INTERRUPT() macro and an
interrupt source argument.
#include <avr/interrupt.h>
EMPTY_INTERRUPT(INT2_vect);

The special interrupt source symbol, BADISR_vect, can be used to define a function
that can process any otherwise undefined interrupts. Without this function defined, an
undefined interrupt will trigger a device reset. For example:
void ISR(BADISR_vect) {
 // place code to process undefined interrupts here
 return;
}

If you wish to allow nested interrupts you can manually add an in-line sei instruction
to your ISR to re-enable the global interrupt flag; however, there is an argument you
can use with the ISR() macro to have this instruction added by the compiler to the
beginning of the interrupt routine. For example:
void ISR(IO_PINS_vect, ISR_NOBLOCK)
{ ... }

If one ISR is to be used with more than one interrupt vector, then you can define that
ISR in the usual way for one vector then reuse that ISR for other vector definitions using
the ISR_ALIASOF() argument.
void __interrupt(PCINT0_vect_num)
{ ... }

void ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));

In some circumstances, the compiler-generated context switch code executed by the
ISR might not be optimal. In such situations, you can request that the compiler omit this
context switch code and supply this yourself. This can be done using the ISR_NAKED
argument, as shown in this example.
void ISR(TIMER1_OVF_vect, ISR_NAKED)
{
 PORTB |= _BV(0); // results in SBI which does not affect SREG
 reti();
}

Note that the compiler will not generate any context switch code, including the final
return from interrupt instruction, so you must write any relevant switching code and the
reti instruction. The SREG register must be manually saved if it is modified by the
ISR, and the compiler-implied assumption of __zero_reg__ always being 0 could be
wrong, for example when an interrupt occurs right after a mul instruction.
 2012-2018 Microchip Technology Inc. DS50002750A-page 83

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.9.2 Changing the Default Interrupt Function Allocation
You can use the __at() specifier (see Section 3.8.5 “Changing the Default Function
Allocation”) if you want to move the interrupt function itself. This does not alter the posi-
tion of the vector table, but the appropriate table entry will still point to the correct
address of the shifted function.

3.9.3 Specifying the Interrupt Vector
The process of populating the interrupt vector locations is fully automatic, provided you
define interrupt functions (as shown in Section 3.9.1 “Writing an Interrupt Service Rou-
tine”). The compiler will automatically link each ISR entry point to the appropriate fixed
vector location.
The location of the interrupt vectors cannot be changed at runtime, nor can you change
the code linked to the vector. That is, you cannot have alternate interrupt functions for
the same vector and select which will be active during program execution. An error will
result if there are more than one interrupt function defined for the same vector.
Interrupt vectors that have not been specified explicitly in the project can be assigned
a default function address by defining an interrupt function that uses BADISR_vect as
its vector.

3.9.4 Context Switching
The compiler will automatically link code into your project which saves the current sta-
tus when an interrupt occurs, and restores this status when the interrupt returns.

3.9.4.1 CONTEXT SAVING ON INTERRUPTS

All call-used registers will be saved in interrupt code generated by the compiler. This is
the context save or context switch code.

3.9.4.2 CONTEXT RESTORATION

Any objects saved by software are automatically restored by software before the inter-
rupt function returns. The order of restoration is the reverse of that used when context
is saved.

3.9.5 Enabling Interrupts
Two macros are available, once you have included <xc.h>, that control the masking
of all available interrupts. These macros are ei(), which enable or unmask all
interrupts, and di(), which disable or mask all interrupts.
On all devices, they affect the I bit in the status register, SREG. These macros should
be used once the appropriate interrupt enable bits for the interrupts that are required in
a program have been enabled.
For example:
TIMSK = _BV(TOIE1);
ei(); // enable all interrupts
// ...
di(); // disable all interrupts

Note: Typically you should not re-enable interrupts inside the interrupt function
itself. Interrupts are automatically re-enabled by hardware on execution of
the reti instruction. Re-enabling interrupts inside an interrupt function can
result in code failure if not correctly handled.
DS50002750A-page 84  2012-2018 Microchip Technology Inc.

C Language Features
In addition to globally enabling interrupts, each device's particular interrupt needs to be
enabled separately if interrupts for this device are desired. While some devices main-
tain their interrupt enable bit inside the device's register set, external and timer inter-
rupts have system-wide configuration registers.
timer_enable_int(ints)

This function modifies the TIMSK register. The value you pass via ints should be the
bit mask for the interrupt enable bit and is device specific.
enable_external_int(mask)

This macro gives access to the GIMSK register (or EIMSK register if using an AVR
Mega device or GICR register for others). This macro is unavailable if none of the reg-
isters listed above are defined.
Example:
// Enable timer 1 overflow interrupts
timer_enable_int(_BV(TOIE1));

// Do some work...

// Disable all timer interrupts
timer_enable_int(0);

3.9.6 Accessing Objects From Interrupt Routines
Reading or writing objects from interrupt routines can be unsafe if other functions
access these same objects.
It is recommended that you explicitly mark objects accessed in interrupt and main-line
code using the volatile specifier (see Section 3.4.8.2 “Volatile Type Qualifier”). The
compiler will restrict the optimizations performed on volatile objects (see
Section 3.13 “Optimizations”).
Even when objects are marked as volatile, the compiler cannot guarantee that they
will be accessed atomically. This is particularly true of operations on multi-byte objects.
Interrupts should be disabled around any main-line code that modifies an object that is
used by interrupt functions, unless you can guarantee that the access is atomic. Mac-
ros are provided in <avr/atomic.h> to assist you access these objects.
 2012-2018 Microchip Technology Inc. DS50002750A-page 85

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.10 MAIN, RUNTIME STARTUP AND RESET
Coming out of reset, your program will first execute runtime startup code added by the
compiler, then control is transfered to your program. This sequence is described in the
following sections.

3.10.1 The main Function
The identifier main is special. You must always have one, and only one, function called
main() in your program. This is the first C function to execute in your program.
Since your program is not called by a host, the compiler inserts special code which pre-
vents the program crashing should the main() function return. This special code
causes execution to jump to itself in an endless loop.
Typically your program will not terminate, and a loop construct (such as a while(1))
is placed around the code in your main() or at the end of your code, so that execution
of the function will never terminate. For example:
int main(void)
{
 // your code goes here
 // finished that, now just wait for interrupts
 while(1)
 continue;
}

3.10.2 Runtime Startup Code
A C program requires certain objects to be initialized and the device to be in a particular
state before it can begin execution of its function main(). It is the job of the runtime
startup code to perform these tasks, specifically (and in no particular order):
• Initialization of static storage duration objects assigned a value when defined
• Clearing of non-initialized static storage duration objects
• General set up of registers or device state
• Calling the main() function
One of several runtime startup code object files which provide the runtime startup code
is linked into your program.
The runtime startup code assumes that the device has just come out of Reset and that
registers will be holding their power-on-reset value. Note that when the watchdog or
RST_SWRST_bm resets the device, the registers will be reset to their known, default set-
tings; whereas, jumping to the reset vector will not change the registers and they will
be left in their previous state.
The sections used to hold the runtime startup code are listed in Table 3-8

TABLE 3-8: RUNTIME STARTUP CODE SECTIONS USED BEFORE MAIN
Section
name Description

.init0 Weakly bound to __init(), see Section 3.10.3 “The Powerup Routine”. If
user defines __init(), it will be jumped into immediately after a reset.

.init1 Unused. User definable.

.init2 In C programs, weakly bound to code which initializes the stack and clears
__zero_reg__ (r1).

.init3 Unused. User definable.

.init4 This section contains the code from libgcc.a that copies the contents of
.data from the program to data memory, as well as the code to clear the .bss
section.
DS50002750A-page 86  2012-2018 Microchip Technology Inc.

C Language Features
The main() function returns to code that is also provided by the runtime startup code.
You can have code executed after main() has returned by placing code in the sections
listed in Table 3-9

3.10.2.1 INITIALIZATION OF OBJECTS

One task of the runtime startup code is to ensure that any static storage duration
objects contain their initial value before the program begins execution. A case in point
would be input in the following example.
int input = 88;

In the above, the initial value, 0x88, will be stored as data in program memory (in the
.dinit section) and will be copied to input in the data memory by the runtime startup
code. For efficiency, initial values are stored as blocks of data and copied by loops.
Since auto objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization and are not considered
by the runtime startup code.

Objects whose content should be preserved over a Reset should be marked with the
__persistent qualifier (see Section 3.4.10.8 “__persistent”). Such objects are linked
in a different area of memory and are not altered by the runtime startup code.

.init5 Unused. User definable.

.init6 Unused for C programs.

.init7 Unused. User definable.

.init8 Unused. User definable.

.init9 Calls the main() function.

TABLE 3-9: RUNTIME STARTUP CODE SECTIONS USED AFTER MAIN
Section
name Description

.fini9 Unused. User definable.

.fini8 Unused. User definable.

.fini7 In C programs, weakly bound to initialize the stack, and to clear
__zero_reg__ (r1).

.fini6 Unused for C program.

.fini5 Unused. User definable.

.fini4 Unused. User definable.

.fini3 Unused for C programs.

.fini2 Unused. User definable.

.fini1 Unused. User definable.

.fini0 Goes into an infinite loop after program termination and completion of any
_exit() code (code in the .fini9 thru .fini1 sections).

TABLE 3-8: RUNTIME STARTUP CODE SECTIONS USED BEFORE MAIN
Section
name Description

Note: Initialized auto variables can impact on code performance, particularly if
the objects are large in size. Consider using static local objects instead.
 2012-2018 Microchip Technology Inc. DS50002750A-page 87

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.10.2.2 CLEARING OBJECTS

Those objects with static storage duration which are not assigned a value must be
cleared before the main() function begins by the runtime startup code, for example.
int output;

The runtime startup code will clear all the memory locations occupied by uninitialized
objects so they will contain zero before main() is executed.
Objects whose contents should be preserved over a Reset should be qualified with
__persistent (see Section 3.4.9.1 “__memx Address Space Qualifier”). Such
objects are linked at a different area of memory and are not altered by the runtime
startup code.

3.10.3 The Powerup Routine
Some hardware configurations require special initialization, often within the first few
instruction cycles after Reset. To achieve this you can have your own powerup routine
executed during the runtime startup code.
Provided you write the required code in one of the .initn sections used by the run-
time startup code, the compiler will take care of linking your code to the appropriate
location without any need for you to adjust the linker scripts. These sections are listed
in Table 3-8.
For example, the following is a small assembly sequence that is placed in the .init1
section and is executed soon after reset and before main() is called.
#include <avr/io.h>

 .section .init1,"ax",@progbits

 ldi r16,_BV(SRE) | _BV(SRW)
 out _SFR_IO_ADDR(MCUCR),r16

Place this routine in an assembly source file, assemble it, and link the output with other
files in your program.
Remember that code in these sections is executed before all the runtime startup code
has been executed, so there is no usable stack and the __zero_reg__ (r1) might not
have been initialized. It is best to leave __stack at its default value (at the end of inter-
nal SRAM since this is faster and required on some devices, like the ATmega161 to
work around known errata), and add -Wl,-Tdata,0x801100 to start the data section
above the stack.
DS50002750A-page 88  2012-2018 Microchip Technology Inc.

C Language Features
3.11 LIBRARIES

3.11.1 Standard Libraries
The C standard libraries contain a standardized collection of functions, such as string,
and math routines. These functions are listed in Appendix A. Library Functions.

3.11.2 User-Defined Libraries
User-defined libraries can be created and linked in with your program. Library files are
easier to manage than many source files, and can result in faster compilation times.
Libraries must, however, be compatible with the target device and options for a partic-
ular project. Several versions of a library might need to be created and maintained to
allow it to be used for different projects.
Libraries can be created manually using the librarian, xc8-ar (see
Section 4.2 “Librarian”).
Once built, user-defined libraries can be used on the command line along with the
source files or added to the Libraries folder in your MPLAB X IDE project.
Library files specified on the command line are scanned first for unresolved symbols;
so, their content can redefine anything that is defined in the C standard libraries (see
Section 3.15.4 “Replacing Library Modules”).

3.11.3 Using Library Routines
Library functions and objects that have been referenced will be automatically linked into
your program, provided the library file is part of your project. The use of a function from
one library file will not include any other functions from that library.
Your program will require declarations for any library functions or symbols it uses. Stan-
dard libraries come with standard C headers (.h files), which can be included into your
source files. See your favorite C text book or Appendix A. Library Functions for the
header that corresponds to each library function. Typically you would write library head-
ers if you create your own library files.
Header files are not library files. Library files contain precompiled code, typically func-
tions and variable definitions; header files provide declarations (as opposed to defini-
tions) for those functions, variables and types in the library. Headers can also define
preprocessor macros.
 2012-2018 Microchip Technology Inc. DS50002750A-page 89

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.12 MIXING C AND ASSEMBLY CODE
Assembly language can be mixed with C code using two different techniques: writing
assembly code and placing it into a separate assembler module, or including it as
in-line assembly in a C module.

3.12.1 Integrating Assembly Language Modules
Entire functions can be coded in assembly language as separate .s (or .S or .sx)
source files included into your project. They will be assembled and combined into the
output image by the linker.
The following are guidelines that must be adhered to when writing a C-callable
assembly routine.
• Include the <xc.h> header file in your code. If this is included using #include,

ensure the extension used by the source file is .S or .sx to ensure the file is pre-
processed.

• Select or define a suitable section for the executable assembly code (see
Section 3.15.1 “Compiler-Generated Psects” for an introductory guide).

• Select a name (label) for the routine
• Ensure that the routine’s label is accessible from other modules
• Use macros like _SFR_IO_ADDR to obtain the correct SFR address to use with

instructions that can access the IO memory space.
• Select an appropriate C-equivalent prototype for the routine on which argument

passing can be modeled.
• If values need to be passed to or returned from the routine, use the appropriate

registers to passed the arguments.
The following example shows an assembly routine for an atmega103 device that takes
an int parameter, adds this to the content of PORTD, and returns this as an int.
#include <xc.h>

 .section .text
 .global plus ; allow routine to be externally used
plus:
; int parameter in r24/5
 in r18, _SFR_IO_ADDR(PORTD) ; read PORTD
 add r24, r18 ; add to parameter
 adc r25, r1 ; add zero to MSB
; parameter registers are also the return location, so ready to return
 ret
 .end

The code has been placed in a .text section, so it will be automatically placed in the
area of memory set aside for code without you having to adjust the default linker
options.
The _SFR_IO_ADDR macro has been used to ensure that the correct address was spec-
ified to instructions that read the IO memory space.

Note: The more assembly code a project contains, the more difficult and time con-
suming will be its maintenance. Assembly code might need revision if the
compiler is updated due to differences in the way the updated compiler may
work. These factors are less likely to occur if the code is written in C.
If assembly must be added, it is preferable to write this as a self-contained
routine in a separate assembly module, rather than in-lining it in C code.
DS50002750A-page 90  2012-2018 Microchip Technology Inc.

C Language Features
Because the C preprocessor #include directive and preprocessor macros were
used, the assembly file must be preprocessed to ensure it uses a .S or .sx extension
when compiled.
To call an assembly routine from C code, a declaration for the routine must be provided.
Here is a C code snippet that declares the operation of the assembler routine, then calls
the routine.
// declare the assembly routine so it can be correctly called
extern int plus(int);

void main(void) {
 volatile unsigned int result;

 result = plus(0x55); // call the assembly routine
}

3.12.2 In-line Assembly
Assembly instructions can be directly embedded in-line into C code using the state-
ment asm();. In-line assembly has two forms: simple and extended.
In the simple form, the assembler instruction is written using the syntax:
asm("instruction");

where instruction is a valid assembly-language construct, for example:
asm("sei");

You can write several instructions in the one string, but you should put each instruction
on a new line and use linefeed and tab characters to ensure they are properly formatted
in the assembly listing file.
asm ("nop\n\t"
 "nop\n\t"
 "nop\n\t"
 "nop\n\t");

In an extended assembler instruction using asm(), the operands of the instruction are
specified using C expressions. The extended syntax, discussed in the following sec-
tions, has the general form:
asm("template" [: ["constraint"(output-operand) [, ...]]
 [: ["constraint"(input-operand) [, ...]]
 ["clobber" [, ...]]
]]);

For example,
asm("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

The template specifies the instruction mnemonic and optional placeholders for the
input and output operands, specified by a percent sign followed by a single digit and
which are described in the following section. The compiler replaces these and other
tokens in the template that refer to inputs, outputs, and goto labels, then outputs the
resulting string to the assembler.

3.12.2.1 INPUT AND OUTPUT OPERANDS

Following the template is a comma-separated list of zero or more output operands,
which indicate the names of C objects modified by the assembly code and input oper-
ands, which make values from C variables and expressions available to the assembly
code.
 2012-2018 Microchip Technology Inc. DS50002750A-page 91

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Each operands has several components, described by:
[[asmSymbolicName]] constraint (Cexpression)

where asmSymbolicName is an optional symbolic name for the operand,
constraint is string specifying constraints on the placement of the operand, and
Cexpression is the C variable or expression to be used by the operand and which is
enclosed in parentheses.
The first (left-most) output operand is numbered 0, any subsequent output operands
are numbered one higher than the operand before it, with input operands being num-
bered in the same way.
The supported constraint letters are listed in Table 3-10; modifiers in Table 3-12.

TABLE 3-10: INPUT AND OUTPUT OPERAND CONSTRAINTS
Letter Constraint Range

a Simple upper registers r16 to r23

b Base pointer registers pairs r28 to r32 (Y, Z)

d Upper register r16 to r31

e Pointer register pairs r26 to r31 (X, Y, Z)

l Lower registers r0 to r15

q Stack pointer register SPH:SPL

r Any register r0 to r31

t Temporary register r0

w Special upper register pairs usable in adiw instruction r24, r26, r28, r30

x Pointer register pair X r27:r26 (X)

y Pointer register pair Y r29:r28 (Y)

z Pointer register pair Z r31:r30 (Z)

G Floating point constant 0.0

I 6-bit positive integer constant 0 to 63

J 6-bit negative integer constant -63 to 0

K Integer constant 2

L Integer constant 0

M 8-bit integer constant 0 to 255

N Integer constant -1

O Integer constant 8, 16, 24

P Integer constant 1

Q Memory address based on Y or Z pointer with displacement

Cm2 Integer constant -2

C0n Integer constant, where n ranges from 0 to 7 n

Can n-byte integer constant that allows AND without clobber regis-
ter, where n ranges from 2 to 4

Con n-byte integer constant that allows OR without clobber register,
where n ranges from 2 to 4

Cxn n-byte integer constant that allows XOR without clobber regis-
ter, where n ranges from 2 to 4

Csp Integer constant -6 to 6

Cxf 4-byte integer constant with at least one 0xF nibble

C0f 4-byte integer constant with no 0xF nibbles
DS50002750A-page 92  2012-2018 Microchip Technology Inc.

C Language Features
The constraint you choose should match the registers or constants that are appropriate
for the AVR instruction operand. The compiler will check the constraint against your C
expression; however, if the wrong constraint is used, there is the possibility of code fail-
ing at runtime. For example, if you specify the constraint r with an ORI instruction, then
the compiler is free to select any register (r0 thru r31) for that operand. This will fail, if
the compiler chooses a register in the range r2 to r15. The correct constraint in this
case is d. On the other hand, if you use the constraint M, the compiler will make sure
that you only use an 8-bit immediate value operand.
Table 3-11 shows all the AVR assembler mnemonics that require operands and the rel-
evant constraints (explained in Table 3-10) for each of those operands.

Ynn Fixed-point constant known at compile time

Y0n Fixed-point or integer constant, where n ranges from 0 to 2 n

Ymn Fixed-point or integer constant, where n ranges from 1 to 2 -n

YIJ Fixed-point or integer constant -0x3F to 0x3F

TABLE 3-11: INSTRUCTIONS AND OPERAND CONSTRAINTS
Mnemonic Constraints Mnemonic Constraints

adc r,r add r,r

adiw w,I and r,r

andi d,M asr r

bclr I bld r,I

brbc I,label brbs I,label

bset r,I bst r,I

cbi I,I cbr d,I

com r cp r,r

cpc r,r cpi d,M

cpse r,r dec r

elpm t,z eor r,r

in r,I inc r

ld r,e ldd r,b

ldi d,M lds r,label

lpm t,z lsl r

lsr r mov r,r

movw r,r mul r,r

neg r or r,r

ori d,M out I,r

pop r push r

rol r ror r

sbc r,r sbci d,M

sbi I,I sbic I,I

sbiw w,I sbr d,M

sbrc r,I sbrs r,I

ser d st e,r

std b,r sts label,r

TABLE 3-10: INPUT AND OUTPUT OPERAND CONSTRAINTS
Letter Constraint Range
 2012-2018 Microchip Technology Inc. DS50002750A-page 93

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Constraint characters may be prepended by a single constraint modifier. Constraints
without a modifier specify read-only operands. The constraint modifiers are shown in
Table 3-12

So, in the example:
asm("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

the assembler instruction is defined by the template, "in %0, %1". The %0 token
refers to the first output operand, "=r" (value), and %1 refers to the first input oper-
and, "I" (_SFR_IO_ADDR(PORTD)). No clobbered registers were indicated in this
example.
The compiler might encode the above in-line assembly as follows:
lds r24,value
/* #APP */
in r24, 12
/* #NOAPP */
sts value,r24

The comments have been added by the compiler to inform the assembler that the
enclosed instruction was hand-written. In this example, the compiler selected register
r24 for storage of the value read from PORTD; however, it might not explicitly load or
store the value, nor include your assembler code at all, based on the compiler's optimi-
zation strategy. For example, if you never use the variable value in the remaining part
of the C program, the compiler could remove your in-line assembly code unless you
switch off the optimizers. To avoid this, you can add the volatile attribute to the asm
statement, as shown below:
asm volatile("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

Operands can be given names, if desired. The name is prepended in brackets to the
constraints in the operand list and references to the named operand use the bracketed
name instead of a number after the % sign. Thus, the above example could also be writ-
ten as
asm("in %[retval], %[port]" :
 [retval] "=r" (value) :
 [port] "I" (_SFR_IO_ADDR(PORTD)));

The clobber list is primarily used to tell the compiler about modifications done by the
assembler code. This section of the statement can be omitted, but all other sections are
required. Use the delimiting colons, but leave the operand field empty if there is no input
or output used, for example:
asm volatile("cli"::);

Output operands must be write-only and the C expression result must be an lvalue, i.e.,
be valid on the left side of an assignment. Note, that the compiler will not check if the
operands are of a reasonable type for the kind of operation used in the assembler
instructions. Input operands are read-only.

sub r,r subi d,M

swap r

TABLE 3-12: INPUT AND OUTPUT CONSTRAINT MODIFIERS
Letter Constraint

= Write-only operand, usually used for all output operands.

+ Read-write operand

& Register should be used for output only

TABLE 3-11: INSTRUCTIONS AND OPERAND CONSTRAINTS
Mnemonic Constraints Mnemonic Constraints
DS50002750A-page 94  2012-2018 Microchip Technology Inc.

C Language Features
In cases where you need the same operand for input and output, read-write operands
are not supported, but it is possible to indicate which operand’s register to use as the
input register by a single digit in the constraint string. Here is an example:
asm volatile("swap %0" : "=r" (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constraint "0"
tells the compiler, to use the same input register used by the first operand. Note, how-
ever, that this doesn't automatically imply the reverse case.
The compiler may choose the same registers for input and output, even if not told to do
so. This can be an issue if the output operand is modified by the assembler code before
the input operand is used. In the situation where your code depends on different regis-
ters used for input and output operands, you must use the constraint modifier, &, with
the output operand, as shown in the following example.
asm volatile("in %0,%1" "\n\t"
 "out %1,%2" "\n\t"
 : "=&r" (result)
 : "I" (_SFR_IO_ADDR(port)), "r" (source)
);

Here, a value is read from a port and then a value is written to the same port. If the
compiler choses the same register for input and output, then the output value will be
clobbered by the first assembler instruction; however, the use of the & constraint mod-
ifier prevents the compiler from selecting any register for the output value that is also
used for any of the input operands.
Here is another example that swaps the high and low byte of a 16-bit value:
asm volatile("mov __tmp_reg__, %A0" "\n\t"
 "mov %A0, %B0" "\n\t"
 "mov %B0, __tmp_reg__" "\n\t"
 : "=r" (value)
 : "0" (value)
);

Notice the usage of register __tmp_reg__, which you can use without having to save
its content. The letters A and B, used in the tokens representing the instruction oper-
ands refer to byte components of a multi-byte register, A referring to the least significant
byte, B the next most significant byte, etc.
The following example, which swaps bytes of a 32-bit value, uses the C and D compo-
nents of a 4 byte quantity, and rather than list the same operand as both input and out-
put operand (via "0" as the input operand constraint), it can also be declared as a
read-write operand by using "+r" as the output constraint.
asm volatile("mov __tmp_reg__, %A0" "\n\t"
 "mov %A0, %D0" "\n\t"
 "mov %D0, __tmp_reg__" "\n\t"
 "mov __tmp_reg__, %B0" "\n\t"
 "mov %B0, %C0" "\n\t"
 "mov %C0, __tmp_reg__" "\n\t"
 : "+r" (value)
);

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. This also implies, that it is often necessary
to cast the type of an input operand to the desired size.
If an input operand constraint indicates a pointer register pair, such as "e" (ptr), and
the compiler selects register Z (r30:r31), then you must use %a0 (lower case a) to refer
to the Z register, when used in a context like:
ld r24,Z
 2012-2018 Microchip Technology Inc. DS50002750A-page 95

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.12.2.2 CLOBBER OPERAND

The list of clobbered registers is optional; however, if the instruction modifies registers
that are not specified as operands, you need to inform the compiler of these changes.
Typically you can arrange the assembly so that you do not need to specify what has
been clobbered. Indicating that a register has been clobbered will force the compiler to
store their values before and reload them after your assembly instructions and will limit
the ability of the compiler to optimize your code.
The following example will perform an atomic increment. It disables the interrupts then
increments an 8-bit value pointed to by a pointer variable. Note, that a pointer is used
because the incremented value needs to be stored before the interrupts are enabled.
asm volatile(
 "cli" "\n\t"
 "ld r24, %a0" "\n\t"
 "inc r24" "\n\t"
 "st %a0, r24" "\n\t"
 "sei" "\n\t"
 :
 : "e" (ptr)
 : "r24"
);

The compiler might produce the following code for the above:
cli
ld r24, Z
inc r24
st Z, r24
sei

To have this sequence avoid clobbering register r24, make use of the special temporary
register __tmp_reg__ defined by the compiler.
asm volatile(
 "cli" "\n\t"
 "ld __tmp_reg__, %a0" "\n\t"
 "inc __tmp_reg__" "\n\t"
 "st %a0, __tmp_reg__" "\n\t"
 "sei" "\n\t"
 :
 : "e" (ptr)
);

The compiler will always reload the temporary register when it is needed.
The above code unconditionally re-enables the interrupts, which may not be desirable.
To make the code more versatile, the current status can be stored in a register selected
by the compiler.
{
 uint8_t s;
 asm volatile(
 "in %0, __SREG__" "\n\t"
 "cli" "\n\t"
 "ld __tmp_reg__, %a1" "\n\t"
 "inc __tmp_reg__" "\n\t"
 "st %a1, __tmp_reg__" "\n\t"
 "out __SREG__, %0" "\n\t"
 : "=&r" (s)
 : "e" (ptr)
);
}

DS50002750A-page 96  2012-2018 Microchip Technology Inc.

C Language Features
The assembler code here modifies the variable, that ptr points to, so the definition of
ptr should indicate that its target can change unexpected, using the volatile spec-
ifier, for example:
volatile uint8_t *ptr;

The special clobber memory informs the compiler that the assembler code may modify
any memory location. It forces the compiler to update all variables for which the con-
tents are currently held in a register before executing the assembler code.
When you use a memory clobber with an assembly instruction, it ensures that all prior
accesses to volatile objects are complete before the instruction executes, and that exe-
cution of volatile accesses after the instruction have not commenced. However, it does
not prevent the compiler from moving non-volatile-related instructions across the bar-
rier created by the memory clobber instruction, as such instructions might be those that
enable or disable interrupts.

3.12.2.3 ASSEMBLY MACROS

In-line assembly language code sequences can be defined as macros and provided in
header files so that they may be reused. Some are already defined in the library file
headers, found in the avr/avr/include directory.
Using include files that contain assembly macros might produce compiler warnings
when compiling in strict ANSI mode. To avoid that, you can use the __asm__ and
__volatile__ keyword aliases.
If a macro contains the definition for a label and that macro is used several times, this
can result in multiply defined symbols. In such cases, you can use a special pattern,
%=, which is replaced by a unique number on each asm statement, as shown in the fol-
lowing example:
#define loop_until_bit_is_clear(port,bit) \ __asm__ __volatile__ (\
"L_%=: " "sbic %0, %1" "\n\t" \ "rjmp L_%=" \ : /* no outputs */ : "I"
(_SFR_IO_ADDR(port)), "I" (bit))

When used for the first time, L_= might be replaced by L_1404, the next usage might
generate L_1405 or whatever.
Another option is to use Unix-assembler style numeric labels, which consist of a num-
ber only. References to these labels consist of the number, followed by the letter b for
a backward reference, or f for a forward reference. These local labels may be re-used
within the source file, references will pick the closest label with the same number and
given direction. Using these labels, the above example becomes:
#define loop_until_bit_is_clear(port,bit) __asm__ __volatile__ ("1: "
"sbic %0, %1" "\n\t" "rjmp 1b" : /* no outputs */ : "I"
(_SFR_IO_ADDR(port)), "I" (bit))

3.12.3 Interaction between Assembly and C Code
MPLAB XC8 C Compiler incorporates several features designed to allow C code to
obey requirements of user-defined assembly code. There are also precautions that
must be followed to ensure that assembly code does not interfere with the assembly
generated from C code.
 2012-2018 Microchip Technology Inc. DS50002750A-page 97

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.12.3.1 EQUIVALENT ASSEMBLY SYMBOLS

By default AVR-GCC uses the same symbolic names of functions or objects in C and
assembler code. There is no leading underscore character prepended to a C lan-
guage’s symbol in assembly code.
You can specify a different name for the assembler code by using a special form of the
asm() statement:
unsigned long value asm("clock") = 3686400;

This statement instructs the compiler to use the symbol name clock rather than
value. This makes sense only for objects with static storage duration, because
stack-based objects do not have symbolic names in the assembler code and these can
be cached in registers.
With the compiler you can specify the use of a specific register:
void Count(void)
{
 register unsigned char counter asm("r3");

 // ... some code...
 asm volatile("clr r3");
 // ... more code...
}

The assembler instruction, clr r3, will clear the variable counter. The compiler will
not completely reserve the specified register, and it might be re-used. The compiler is
unable to check whether the use of the specified register conflicts with any other pre-
defined register. It is recommended that you do not reserve too many registers in this
way.
In order to change the assembly name of a function, you need a prototype declaration,
because the compiler will not accept the asm() keyword in a function definition. For
example:
extern long calc(void) asm ("CALCULATE");

Calling the function calc() in C code will generate assembler instructions which call
the function CALCULATE().

3.12.3.2 ACCESSING REGISTERS FROM ASSEMBLY CODE

In assembly code, SFR definitions are not automatically accessible. The header file
<xc.h> can be included to gain access to these register definitions.
The symbols for registers in this header file are the same as those used in the C
domain; however, you should use the appropriate I/O macros to ensure the correct
address is encoded into instructions which accesses memory in the I/O space, for
example to following writes to the TCNT0 register:
out _SFR_IO_ADDR(TCNT0), r19

Bits within registers have macros associated with them and can be used directly with
instructions that expect a bit number (0 thru 7), or with the _BV() macro if you need a
bit mask based on that bit’s position in the SFR, for example:
sbic _SFR_IO_ADDR(PORTD), PD4
ldi r16, _BV(TOIE0)
DS50002750A-page 98  2012-2018 Microchip Technology Inc.

C Language Features
3.13 OPTIMIZATIONS
The MPLAB XC8 compiler can perform a variety of optimizations. Optimizations can be
controlled using the -O option (described in Section 2.7.6 “Options for Controlling
Optimization”). In Free mode, some of these optimizations are disabled. Even if they
are enabled, optimizations might only be applied if very specific conditions are met. As
a result, you might see that some lines of code are optimized, but other similar lines are
not. When debugging code, you may wish to reduce the optimization level to ensure
expected program flow.

3.14 PREPROCESSING
All C source files are preprocessed before compilation. The -E option can be used to
preprocess and then stop the compilation (see Section 2.7.2.2 “E: Preprocess Only”).
Assembler files can also be preprocessed if they use a .S or .sx extension.(see
Section 2.2.3 “Input File Types”).

3.14.1 Preprocessor Directives
MPLAB XC8 accepts the standard preprocessor directives, and these are listed in
Table 3-13.
Macro expansion using arguments can use the # character to convert an argument to
a string, and the ## sequence to concatenate arguments. If two expressions are being
concatenated, consider using two macros in case either expression requires
substitution itself; for example
#define __paste1(a,b) a##b
#define __paste(a,b) __paste1(a,b)

You can use the paste macro to concatenate two expressions that themselves can
require further expansion. Once a macro identifier has been expanded, it will not be
expanded again if it appears after concatenation.
 2012-2018 Microchip Technology Inc. DS50002750A-page 99

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.14.1.1 PREPROCESSOR ARITHMETIC

Preprocessor macro replacement expressions are textual and do not utilize types.
Unless they are part of the controlling expression to the inclusion directives (discussed
below), macros are not evaluated by the preprocessor. Once macros have been textu-
ally expanded and preprocessing is complete, the expansion forms a C expression
which is evaluated by the code generator along with other C code. Tokens within the
expanded C expression inherit a type and values are then subject to integral promotion
and type conversion in the usual way.
If a macro is part of the controlling expression to a conditional inclusion directive (#if
or #elif), the macro must be evaluated by the preprocessor. The result of this evalu-
ation is often different to the C-domain result for the same sequence. The preprocessor
assigns sizes to literal values in the controlling expression that are equal to the largest
integer size accepted by the compiler. For the MPLAB XC8 C compiler, this size is 64
bits.

TABLE 3-13: PREPROCESSOR DIRECTIVES
Directive Meaning Example

preprocessor null directive, do nothing

#assert generate error if condition false #assert SIZE > 10

#define define preprocessor macro #define SIZE (5)
#define FLAG
#define add(a,b) ((a)+(b))

#elif short for #else #if see #ifdef

#else conditionally include source lines see #if

#endif terminate conditional source inclusion see #if

#error generate an error message #error Size too big

#if include source lines if constant
expression true

#if SIZE < 10
 c = process(10)
#else
 skip();
#endif

#ifdef include source lines if preprocessor
symbol defined

#ifdef FLAG
 do_loop();
#elif SIZE == 5
 skip_loop();
#endif

#ifndef include source lines if preprocessor
symbol not defined

#ifndef FLAG
 jump();
#endif

#include include text file into source #include <stdio.h>
#include “project.h”

#line specify line number and filename for
listing

#line 3 final

#nn (where nn is a number) short for
#line nn

#20

#pragma compiler specific options Refer to Section 3.14.3 “Pragma
Directives”

#undef undefines preprocessor symbol #undef FLAG

#warning generate a warning message #warning Length not set
DS50002750A-page 100  2012-2018 Microchip Technology Inc.

C Language Features
The following code does not work as you might expect it to work. The preprocessor will
evaluate MAX to be the result of a 64-bit multiplication, 0xF4240. However, the defini-
tion of the long int variable, max, will be assigned the value 0x4240 (since the con-
stant 1000 has a signed int type, and the C-domain multiplication will also be
performed using a 16-bit signed int type).
#define MAX 1000*1000
...
#if MAX > INT16_MAX // evaluation of MAX by preprocessor
long int max = MAX; // evaluation of MAX by code generator
#else
int max = MAX; // evaluation of MAX by code generator
#endif

Overflow in the C domain can be avoided by using a constant suffix in the macro (see
Section 3.4.7 “Constant Types and Formats”). For example, an L after a number in a
macro expansion indicates it should be interpreted by the C compiler as a long, but
this suffix does not affect how the preprocessor interprets the value, if it needs to
evaluate it.
So, for example:
#define MAX 1000*1000L

will evaluate to 0xF4240 in C expressions.
 2012-2018 Microchip Technology Inc. DS50002750A-page 101

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.14.2 Predefined Macros
The compiler drivers define certain symbols to the preprocessor, allowing conditional
compilation based on chip type, etc. The symbols listed in Table 3-14 show the more
common symbols defined by the drivers. Each symbol, if defined, is equated to 1.
(unless otherwise stated).

TABLE 3-14: PREDEFINED MACROS
Symbol Description

_XC8_MODE_ indicates which compiler, PRO, Standard or Free, is in use
Values of 2, 1 or 0 are assigned, respectively.

__AVR_Device__ Set when the -mcpu option specifies a device rather than
an architecture. It indicates the device, for example when
compiling for an atmega8, the macro
__AVR_ATmega8__ will be set.

__AVR_DEVICE_NAME__ Set when the -mcpu option specifies a device rather than
an architecture. It indicates the device, for example when
compiling for an atmega8 the macro is defined to
atmega8.

__AVR_ARCH__ Indicates the device architecture. Possible values are: 2,
25, 3, 31, 35, 4, 5, 51, 6 for the avr2, avr25, avr3, avr31,
avr35, avr4, avr5, avr51, avr6, architectures respectively
and 100, 102, 103, 104, 105, 106, 107 for the avrtiny, avrx-
mega2, avrxmega3, avrxmega4, avrxmega5, avrxmega6,
avrxmega7, architectures respectively.

__AVR_ASM_ONLY__ Indicates that the selected device can only be programmed
in assembly.

__AVR_ERRATA_SKIP__
__AVR_ERRATA_SKIP_JMP
_CALL__

Indicates the selected device (AT90S8515, ATmega103)
must not skip (SBRS, SBRC, SBIS, SBIC, and CPSE
instructions) 32-bit instructions because of a hardware erra-
tum. The second macro is only defined if
__AVR_HAVE_JMP_CALL__ is also set.

__AVR_HAVE_EIJMP_EICA
LL__

Indicates the selected device has more then 128 kB of pro-
gram memory, a 3-byte wide program counter, and the
EIJMP and EICALL instructions.

__AVR_HAVE_ELPM__ Indicates the selected device has the ELPM instruction.

__AVR_HAVE_ELPMX__ Indicates the device has the ELPM Rn,Z and ELPM
Rn,Z+ instructions.

__AVR_HAVE_JMP_CALL__ Indicates the selected device has the JMP and CALL
instructions and has more than 8kB of program memory.

__AVR_HAVE_LPMX__ Indicates the selected device has the LPM Rn,Z and LPM
Rn,Z+ instructions.

__AVR_HAVE_MOVW__ Indicates the selected device has the MOVW instruction, to
perform 16-bit register-register moves.

__AVR_HAVE_MUL__
__AVR_HAVE_MUL__

Indicates the selected device has a hardware multiplier.

__AVR_HAVE_RAMPD__

__AVR_HAVE_RAMPX__

__AVR_HAVE_RAMPY__
__AVR_HAVE_RAMPZ__

Indicates the device has the RAMPD, RAMPX, RAMPY, or
RAMPZ special function register, respectively.

__AVR_HAVE_SPH__
__AVR_SP8__

Indicates the device has a 16- or 8-bit stack pointer, respec-
tively. The definition of these macros is affected by the
selected device, and for avr2 and avr25 architectures.
DS50002750A-page 102  2012-2018 Microchip Technology Inc.

C Language Features
3.14.3 Pragma Directives
There is only one MPLAB XC8-specific pragma that is accepted, the config pragma
(discussed in Section 3.3.5 “Configuration Bit Access”).

__AVR_HAVE_8BIT_SP__
__AVR_HAVE_16BIT_SP__

Indicates the whether 8- or 16-bits of the stack pointer is
used, respectively, by the compiler. The -mtiny-stack
option will affect which macros are defined

__AVR_ISA_RMW__ Indicates the selected device has Read-Modify-Write
instructions (XCH, LAC, LAS and LAT).

__AVR_MEGA__ Indicates the selected devices JMP and CALL instructions.

__AVR_PM_BASE_ADDRESS

__=addr

Indicates the address space is linear and program memory
is mapped into data memory. The value assigned to this
macro is the starting address of the mapped memory.

__AVR_SFR_OFFSET__=of

fset

Indicates the offset to subtract from the data memory
address for those instructions (e.g. IN, OUT, and SBI) that
can access SFRs directly.

__AVR_SHORT_CALLS__ Indicates the use of the -mshort-calls option, which
affects the call instruction used and which can be set auto-
matically.

__AVR_TINY__ Indicates that the selected device or architecture belongs to
the TINY family.

__AVR_TINY_PM_BASE_AD

DRESS__=addr

Deprecated; use __AVR_PM_BASE_ADDRESS__. Indi-
cates the TINY device address space is linear and program
memory is mapped into data memory.

__AVR_XMEGA__ Indicates that the selected device or architecture belongs to
the XMEGA family.

__AVR_2_BYTE_PC__ Indicates the selected device has up to 128 kB of program
memory and the program counter is 2 bytes wide.

__AVR_3_BYTE_PC__ Indicates the selected device has at least 128 kB of pro-
gram memory and the program counter is 3 bytes wide.

__BUILTIN_AVR_name Indicates the names built-in feature is available for the
selected device

__FLASHn Defines __FLASH, __FLASH1, __FLASH2 etc, based on
the number of flash segments on the selected device.

__MEMX Indicates the __memx specifier is available for the selected
device.

__NO_INTERRUPTS__ Indicates the use of the -mno-interrupts option,
which affects how the stack pointer is changed.

__DATE__ Indicate the current date, e.g., May 21 2004

__FILE__ Indicate this source file being preprocessed

__TIME__ Indicate the current time, e.g., 08:06:31

__XC Indicates MPLAB XC compiler for Microchip is in use

__XC8 Indicates MPLAB XC compiler for Microchip 8-bit devices is
in use

__XC8_VERSION Indicates the compiler’s version number multiplied by 1000,
e.g., v1.00 will be represented by 1000

TABLE 3-14: PREDEFINED MACROS
Symbol Description
 2012-2018 Microchip Technology Inc. DS50002750A-page 103

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
3.15 LINKING PROGRAMS
The compiler will automatically invoke the linker unless the compiler has been
requested to stop earlier in the compilation sequence.
The linker will run with options that are obtained from the command-line driver and use
linker scripts, which specify memory areas and where sections are to be placed.
The linker can create a map file which details the memory assigned to sections and
objects. The map file is the best place to look for memory information.

3.15.1 Compiler-Generated Psects
The code generator places code and data into sections with standard names, which are
subsequently positioned by the default linker scripts. A section can be created in
assembly code by using the .section assembler directive. If you are unsure which
section holds an object or code in your project, produce and check an assembly list file.
The contents of common sections are described below.

3.15.1.1 PROGRAM SPACE SECTIONS

.text – These sections contain all executable code that does not require a spe-
cial link location.

.initn These sections are used to define the runtime startup code, executed
from the moment of reset right through to the invocation of main(). The
code in these sections are executed in order from init0 to init9.

.finin These sections are used to define the exit code, executed after main()
terminates, either by returning or by calling to exit(). The code in the
.finiN sections are executed in descending order from .fini9 to
.fini0.

3.15.1.2 DATA SPACE SECTIONS

.bss – This section contains any objects with static storage duration that have
not been initialized.

.data – This section contains the RAM image of any objects with static storage
duration that have been initialized with values.

.rodata These sections hold read-only data.
DS50002750A-page 104  2012-2018 Microchip Technology Inc.

C Language Features
3.15.2 Changing and Linking the Allocated Section
The location of the default sections in which functions and objects are placed can be
changed via driver options. Section 3.15.1 “Compiler-Generated Psects” lists the
default sections the compiler uses to hold objects and code.
The __section() specifier allows you to have a object or function redirected into a
user-define section. This allows you to relocate individual objects or functions.
Objects that use the __section() specifier will be cleared or initialized in the usual
way by the runtime startup code.
The following are examples of a object and function allocated to a non-default section.
int __section("myBss") foobar;
int __section("myText") helper(int mode) { /* ... */ }

You can link these sections by using the -Wl,--section-start=section=addr
option when building (linking) your program, provided that the linker script has already
defined an output section with the same name. Note that you need to use an offset of
0x800000 for any address that is in the data space. For example, suppose you wish to
place the new myBss section, created above, at SRAM address 0x300:
-Wl,--section-start=myBss=0x800300

For standard sections, like the .text, .data and .bss sections, they can be posi-
tioned using the -Wl,-Tsection,addr option when building (linking) your program.
Thus, if you want the .data section to start at 0x1100, you can use the following option:
-Wl,-Tdata=0x801100

3.15.3 Linker Scripts
Linker scripts are used to instruct the linker how to position sections in memory. There
are five different variants of these scripts, shown in Table 3-15, which are selected
based on the options passed to the linker.

3.15.4 Replacing Library Modules
For library functions that are weak (see Section 3.8.2.3 “weak”), you can have your
own version of a routine replace a library routine with the same name without having to
using the librarian, ,xc8-ar (see Section 4.2 “Librarian”). Simply include the definition
of that routine as part of your project.

TABLE 3-15: LINKER SCRIPT VARIANTS
Script

Extension
Controlling linker

option Linker operation

.x default

.xr -r perform no relocation

.xu -Ur resolve references to constructors

.xn -n set text to be read-only

.xbn -N Set the text and data sections to be readable and writable.
 2012-2018 Microchip Technology Inc. DS50002750A-page 105

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
NOTES:
DS50002750A-page 106  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR

Chapter 4. Utilities
4.1 INTRODUCTION
This chapter discusses some of the utility applications that are bundled with the
compiler.
The applications discussed in this chapter are those more commonly used, but you do
not typically need to execute them directly. Most of their features are invoked indirectly
by the command line driver that is based on the command-line arguments or MPLAB
X IDE project property selections.
The following applications are described in this chapter of the MPLAB XC8 C Compiler
User’s Guide:
• Librarian
• Hexmate
• Objdump
 2012-2018 Microchip Technology Inc. DS50002750A-page 107

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
4.2 LIBRARIAN
The librarian program, xc8-ar, has the function of combining several intermediate files
into a single file, known as a library or archive file. Libraries are easier to manage and
might consume less disk space that the individual files.
The librarian can build all library types needed by the compiler and can detect the for-
mat of existing libraries.

4.2.1 Using the Librarian
The librarian program is called xc8-ar and has the following basic command format:
xc8-ar [options] file.a [file1.o file2.o...]

where file.a represents the library being created or edited. The following files, if
required, are the modules of the library that is required by the command specified.
The options is zero or more options, shown in Table 4-1, that control the program.

When replacing or extracting modules, the names of the modules to be replaced or
extracted must be specified. If no names are supplied, all the modules in the library will
be replaced or extracted respectively.
Creating a library file or adding a file to an existing library is performed by requesting
the librarian to replace the module in the library. Since the module is not present, it will
be appended to the library. The librarian creates libraries with the modules in the order
in which they were given on the command line. When updating a library, the order of
the modules is preserved. Any modules added to a library will be appended to the end.
The ordering of the modules in a library is significant to the linker. If a library contains
a module that references a symbol defined in another module in the same library, the
module defining the symbol should come after the module referencing the symbol.
When using the -d option, the specified modules will be deleted from the library. In this
instance, it is an error not to supply any module names.
The -p option will list the modules within the library file.
The -m option takes a list of module names and re-orders the matching modules in the
library file so that they have the same order as the one listed on the command line.
Modules that are not listed are left in their existing order and will appear after the
re-ordered modules.

4.2.1.1 EXAMPLES

Here are some examples of usage of the librarian. The following command:
xc8-ar -r myPicLib.a ctime.o init.o

creates a library called myPicLib.a that contains the modules ctime.o and init.o
The following command deletes the object module a.o from the library lcd.a:
xc8-ar -d lcd.a a.o

TABLE 4-1: LIBRARIAN COMMAND-LINE OPTIONS
Option Effect

-d Delete module
-m Re-order modules
-p List modules
-r Replace modules
-x Extract modules
--target Specify output format
DS50002750A-page 108  2012-2018 Microchip Technology Inc.

Utilities
4.3 HEXMATE
The hexmate utility is a program designed to manipulate Intel HEX files. hexmate is
a post-link stage utility that provides the facility to:
• Calculate and store variable-length hash values
• Fill unused memory locations with known data sequences
• Merge multiple Intel HEX files into one output file
• Convert INHX32 files to other INHX formats (e.g., INHX8M)
• Detect specific or partial opcode sequences within a HEX file
• Find/replace specific or partial opcode sequences
• Provide a map of addresses used in a HEX file
• Change or fix the length of data records in a HEX file
• Validate checksums within Intel HEX files
Typical applications for hexmate might include:
• Merging a bootloader or debug module into a main application at build time
• Calculating a checksum or CRC value over a range of program memory and

storing its value in program memory or EEPROM
• Filling unused memory locations with an instruction to send the PC to a known

location if it gets lost
• Storage of a serial number at a fixed address
• Storage of a string (e.g., time stamp) at a fixed address
• Store initial values at a particular memory address (e.g., initialize EEPROM)
• Detecting usage of a buggy/restricted instruction
• Adjusting HEX file to meet requirements of particular bootloaders

4.3.1 Hexmate Command Line Options
If hexmate is to be run directly, its usage is:
hexmate [specs,]file1.hex [... [specs,]fileN.hex] [options]

where file1.hex through to fileN.hex form a list of input Intel HEX files to merge.
If only one HEX file is specified, no merging takes place, but other functionality can be
specified by additional options. Table 4-2 lists the command line options that hexmate
accepts.

TABLE 4-2: hexmate COMMAND-LINE OPTIONS
Option Effect

--EDF Specify the message description file.
--EMAX Set the maximum number of permitted errors before terminating.
--MSGDISABLE Disable messages with the numbers specified.
--SLA Set the start linear address for type 5 records.
--VER Display version and build information then quit.
-ADDRESSING Set address fields in all hexmate options to use word addressing

or other.
-BREAK Break continuous data so that a new record begins at a set address.
-CK Calculate and store a value.
-FILL Program unused locations with a known value.
-FIND Search and notify if a particular code sequence is detected.
-FIND...,DELETE Remove the code sequence if it is detected.
-FIND...,REPLACE Replace the code sequence with a new code sequence.
 2012-2018 Microchip Technology Inc. DS50002750A-page 109

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
If you are using the MPLAB X IDE, a log file is produced by default. It will have the proj-
ect’s name and the extension .hxl.
The input parameters to hexmate are now discussed in detail. The format or assumed
radix of values associated with options are described with each option. Note also, that
any address fields specified in these options are to be entered as byte addresses,
unless specified otherwise by the -ADDRESSING option.

4.3.1.1 SPECIFICATIONS,FILENAME.HEX

The hexmate application can process Intel HEX files that use either INHX32 or
INHX8M format. Additional specifications can be applied to each HEX file to place
restrictions or conditions on how this file should be processed.
If any specifications are used, they must precede the filename. The list of specifications
will then be separated from the filename by a comma.
A range restriction can be applied with the specification rStart-End, where Start
and End are both assumed to be hexadecimal values. A range restriction will cause
only the address data falling within this range to be used. For example:
r100-1FF,myfile.hex

will use myfile.hex as input, but only process data which is addressed within the
range 100h-1FFh (inclusive) from that file.
An address shift can be applied with the specification sOffset. If an address shift is
used, data read from this HEX file will be shifted (by the offset specified) to a new
address when generating the output. The offset can be either positive or negative. For
example:
r100-1FFs2000,myfile.hex

will shift the block of data from 100h-1FFh to the new address range 2100h-21FFh.
Be careful when shifting sections of executable code. Program code should only be
shifted if it is position independent.

4.3.1.2 + PREFIX

When the + operator precedes an argument or input file, the data obtained from that
source will be forced into the output file and will overwrite another other data existing
at that address range. For example:
+input.hex +-STRING@1000=”My string”

-FORMAT Specify maximum data record length or select INHX variant.
-HELP Show all options or display help message for specific option.
-LOGFILE Save hexmate analysis of output and various results to a file.
-MASK Logically AND a memory range with a bitmask.
-Ofile Specify the name of the output file.
-SERIAL Store a serial number or code sequence at a fixed address.
-SIZE Report the number of bytes of data contained in the resultant HEX

image.
-STRING Store an ASCII string at a fixed address.
-STRPACK Store an ASCII string at a fixed address using string packing.
-W Adjust warning sensitivity.
+ Prefix to any option to overwrite other data in its address range, if

necessary.

TABLE 4-2: hexmate COMMAND-LINE OPTIONS (CONTINUED)
Option Effect
DS50002750A-page 110  2012-2018 Microchip Technology Inc.

Utilities
Ordinarily, hexmate will issue an error if two sources try to store differing data at the
same location. Using the + operator informs hexmate that if more than one data
source tries to store data to the same address, the one specified with a + prefix will take
priority.

4.3.1.3 --EDF

This option must be used to have warning and hexmate error messages correctly dis-
played. The argument should be the full path to the message file to use when executing
hexmate. The message files are located in the MPLAB XC8 compiler’s pic/dat
directory (e.g., the English language file is called en_msgs.txt).

4.3.1.4 --EMAX

This option sets the maximum number of errors hexmate will display before execution
is terminated, e.g., --EMAX=25. By default, up to 20 error messages will be displayed.

4.3.1.5 --MSGDISABLE

This option allows error, warning or advisory messages to be disabled during execution
of hexmate.
The option is passed a comma-separated list of message numbers that are to be dis-
abled. Any error message numbers in this list are ignored unless they are followed by
an :off argument. If the message list is specified as 0, then all warnings are disabled.

4.3.1.6 --SLA

This option allows you to specify the linear start address for type 5 records in the Hex
output file, e.g., --SLA=0x10000.

4.3.1.7 --VER

This option will ask hexmate to print version, build information, and then quit.

4.3.1.8 -ADDRESSING

By default, all address arguments in hexmate options expect that values will be
entered as byte addresses. In some device architectures, the native addressing format
can be something other than byte addressing. In these cases, it would be much simpler
to be able to enter address-components in the device’s native format. To facilitate this,
the -ADDRESSING option is used.
This option takes one parameter that configures the number of bytes contained per
address location. For example, if a device’s program memory naturally used a 16-bit (2
byte) word-addressing format, the option -ADDRESSING=2 will configure hexmate to
interpret all command line address fields as word addresses. The affect of this setting
is global and all hexmate options will now interpret addresses according to this setting.
This option will allow specification of addressing modes from one byte per address to
four bytes per address.

4.3.1.9 -BREAK

This option takes a comma-separated list of addresses. If any of these addresses are
encountered in the HEX file, the current data record will conclude and a new data
record will recommence from the nominated address. This can be useful to use new
data records to force a distinction between functionally different areas of program
space. Some HEX file readers depend on this.
 2012-2018 Microchip Technology Inc. DS50002750A-page 111

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
4.3.1.10 -CK

The -CK option is for calculating a hash value. The usage of this option is:
-CK=start-end@dest [+offset][wWidth][tCode][gAlgorithm][pPolynomial]

where:
• start and end specify the address range over which the hash will be calculated.

If these addresses are not a multiple of the algorithm width, the value zero will be
padded into the relevant input word locations that are missing.

• dest is the address where the hash result will be stored. This value cannot be
within the range of calculation.

• offset is an optional initial value to be used in the calculations.
• Width is optional and specifies the byte-width of the result. Results can be calcu-

lated for byte-widths of 1 to 4 bytes. If a positive width is requested, the result will
be stored in big-endian byte order. A negative width will cause the result to be
stored in little-endian byte order. If the width is left unspecified, the result will be 2
bytes wide and stored in little-endian byte order. This width argument is not used if
you have selected any Fletcher algorithm.

• Code is a hexadecimal code that will trail each byte in the result. This can allow
each byte of the hash result to be embedded within an instruction.

• Algorithm is an integer to select which hexmate hash algorithm to use to calcu-
late the result. A list of selectable algorithms is provided in Table 4-3. If
unspecified, the default algorithm used is 8-bit checksum addition (1).

• Polynomial is a hexadecimal value which is the polynomial to be used if you
have selected a CRC algorithm.

All numerical arguments are assumed to be hexadecimal values, except for the
algorithm selector and result width, which are assumed to be decimal values.
A typical example of the use of the checksum option is:
-CK=0-1FFF@2FFE+2100w2g2

This will calculate a checksum over the range 0 to 0x1FFF and program the checksum
result at address 0x2FFE. The checksum value will be offset by 0x2100. The result will
be two bytes wide.

For more details about the algorithms that are used to calculate checksums, see
Section 4.3.2 “Hash Functions”.

TABLE 4-3: HEXMATE HASH ALGORITHM SELECTION
Selector Algorithm Description

-5 Reflected cyclic redundancy check (CRC)
-4 Subtraction of 32 bit values from initial value
-3 Subtraction of 24 bit values from initial value
-2 Subtraction of 16 bit values from initial value
-1 Subtraction of 8 bit values from initial value
1 Addition of 8 bit values from initial value
2 Addition of 16 bit values from initial value
3 Addition of 24 bit values from initial value
4 Addition of 32 bit values from initial value
5 Cyclic redundancy check (CRC)
7 Fletcher’s checksum (8 bit calculation, 2-byte result width)
8 Fletcher’s checksum (16 bit calculation, 4-byte result width)
DS50002750A-page 112  2012-2018 Microchip Technology Inc.

Utilities
4.3.1.11 -FILL

The -FILL option is used for filling unused memory locations with a known value. The
usage of this option is:
-FILL=[const_width:]fill_expr@address[:end_address]

where:
• const_width has the form wn and signifies the width (n bytes) of each constant

in fill_expr. If const_width is not specified, the default value is two bytes.
That is, -FILL=w1:1 with fill every unused byte with the value 0x01.

• fill_expr can use the syntax (where const and increment are n-byte
constants):
- const fill memory with a repeating constant; i.e., -FILL=0xBEEF becomes

0xBEEF, 0xBEEF, 0xBEEF, 0xBEEF
- const+=increment fill memory with an incrementing constant; i.e.,
-FILL=0xBEEF+=1 becomes 0xBEEF, 0xBEF0, 0xBEF1, 0xBEF2

- const-=increment fill memory with a decrementing constant; i.e.,
-FILL=0xBEEF-=0x10 becomes 0xBEEF, 0xBEDF, 0xBECF, 0xBEBF

- const,const,...,const fill memory with a list of repeating constants; i.e.,
-FILL=0xDEAD,0xBEEF becomes 0xDEAD,0xBEEF,0xDEAD,0xBEEF

• The options following fill_expr result in the following behavior:
- @address fill a specific address with fill_expr; i.e.,
-FILL=0xBEEF@0x1000 puts 0xBEEF at address 1000h. If the fill value is
wider than the addressing value specified with -ADDRESSING, then only part
of the fill value is placed in the output. For example, if the addressing is set to
1, the option above will place 0xEF at address 0x1000 and a warning will be
issued.

- @address:end_address fill a range of memory with fill_expr; i.e.,
-FILL=0xBEEF@0:0xFF puts 0xBEEF in unused addresses between 0 and
255. If the address range (multiplied by the -ADDRESSING value) is not a mul-
tiple of the fill value width, the final location will only use part of the fill value,
and a warning will be issued.

The fill values are word-aligned so they start on an address that is a multiple of the fill
width. Should the fill value be an instruction opcode, this alignment ensures that the
instruction can be executed correctly.
All constants can be expressed in (unsigned) binary, octal, decimal or hexadecimal, as
per normal C syntax, for example, 1234 is a decimal value, 0xFF00 is hexadecimal and
FF00 is illegal.
 2012-2018 Microchip Technology Inc. DS50002750A-page 113

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
4.3.1.12 -FIND

This option is used to detect and log occurrences of an opcode or partial code
sequence. The usage of this option is:
-FIND=Findcode [mMask]@Start-End [/Align][w][t”Title”]

where:
• Findcode is the hexadecimal code sequence to search for and is entered in little

endian byte order.
• Mask is optional. It specifies a bit mask applied over the Findcode value to allow

a less restrictive search. It is entered in little endian byte order.
• Start and End limit the address range to search.
• Align is optional. It specifies that a code sequence can only match if it begins on

an address that is a multiple of this value.
• w, if present, will cause hexmate to issue a warning whenever the code sequence

is detected.
• Title is optional. It allows a title to be given to this code sequence. Defining a

title will make log-reports and messages more descriptive and more readable. A
title will not affect the actual search results.

All numerical arguments are assumed to be hexadecimal values.
Here are some examples.
The option -FIND=3412@0-7FFF/2w will detect the code sequence 1234h when
aligned on a 2 (two) byte address boundary, between 0h and 7FFFh. w indicates that
a warning will be issued each time this sequence is found.
In this next example, -FIND=3412M0F00@0-7FFF/2wt”ADDXY”, the option is the
same as in last example but the code sequence being matched is masked with 000Fh,
so hexmate will search for any of the opcodes 123xh, where x is any digit. If a
byte-mask is used, is must be of equal byte-width to the opcode it is applied to. Any
messaging or reports generated by hexmate will refer to this opcode by the name,
ADDXY, as this was the title defined for this search.
If hexmate is generating a log file, it will contain the results of all searches. -FIND
accepts whole bytes of HEX data from 1 to 8 bytes in length. Optionally, -FIND can be
used in conjunction with REPLACE or DELETE (as described below).

4.3.1.13 -FIND...,DELETE

If the DELETE form of the -FIND option is used, any matching sequences will be
removed. This function should be used with extreme caution and is not normally
recommended for removal of executable code.

4.3.1.14 -FIND...,REPLACE

If the REPLACE form of the -FIND option is used, any matching sequences will be
replaced, or partially replaced, with new codes. The usage for this sub-option is:
-FIND...,REPLACE=Code [mMask]

where:
• Code is a little endian hexadecimal code to replace the sequences that match the
-FIND criteria.

• Mask is an optional bit mask to specify which bits within Code will replace the
code sequence that has been matched. This can be useful if, for example, it is
only necessary to modify 4 bits within a 16-bit instruction. The remaining 12 bits
can masked and left unchanged.
DS50002750A-page 114  2012-2018 Microchip Technology Inc.

Utilities
4.3.1.15 -FORMAT

The -FORMAT option can be used to specify a particular variant of INHX format or
adjust maximum record length. The usage of this option is:
-FORMAT=Type [,Length]

where:
• Type specifies a particular INHX format to generate.
• Length is optional and sets the maximum number of bytes per data record. A

valid length is between 1 and 16 decimal, with 16 being the default.
Consider the case of a bootloader trying to download an INHX32 file, which fails
because it cannot process the extended address records that are part of the INHX32
standard. You know that this bootloader can only program data addressed within the
range 0 to 64k, and that any data in the HEX file outside of this range can be safely
disregarded. In this case, by generating the HEX file in INHX8M format the operation
might succeed. The hexmate option to do this would be -FORMAT=INHX8M.
Now consider if the same bootloader also required every data record to contain exactly
8 bytes of data. This is possible by combining the -FORMAT with -FILL options. Appro-
priate use of -FILL can ensure that there are no gaps in the data for the address range
being programmed. This will satisfy the minimum data length requirement. To set the
maximum length of data records to 8 bytes, just modify the previous option to become
-FORMAT=INHX8M,8.
The possible types that are supported by this option are listed in Table 4-4. Note that
INHX032 is not an actual INHX format. Selection of this type generates an INHX32 file,
but will also initialize the upper address information to zero. This is a requirement of
some device programmers.

4.3.1.16 -HELP

Using -HELP will list all hexmate options. Entering another hexmate option as a
parameter of -HELP will show a detailed help message for the given option. For
example:
-HELP=string

will show additional help for the -STRING hexmate option.

4.3.1.17 -LOGFILE

The -LOGFILE option saves HEX file statistics to the named file. For example:
-LOGFILE=output.hxl

will analyze the HEX file that hexmate is generating, and save a report to a file named
output.hxl.

TABLE 4-4: INHX TYPES USED IN -FORMAT OPTION
Type Description

INHX8M cannot program addresses beyond 64K

INHX32 can program addresses beyond 64K with extended linear address records

INHX032 INHX32 with initialization of upper address to zero
 2012-2018 Microchip Technology Inc. DS50002750A-page 115

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
4.3.1.18 -MASK

Use this option to logically AND a memory range with a particular bitmask. This is used
to ensure that the unimplemented bits in program words (if any) are left blank. The
usage of this option is as follows:
-MASK=hexcode@start-end

where hexcode is a value that will be ANDed with data within the start to end
address range. All values are assumed to be hexadecimal. Multibyte mask values can
be entered in little endian byte order.

4.3.1.19 -OFILE

The generated Intel HEX output will be created in this file. For example:
-Oprogram.hex

will save the resultant output to program.hex. The output file can take the same name
as one of its input files; but by doing so, it will replace the input file entirely.

4.3.1.20 -SERIAL

This option will store a particular HEX value sequence at a fixed address. The usage
of this option is:
-SERIAL=Code [+/-Increment]@Address [+/-Interval][rRepetitions]

where:
• Code is a hexadecimal sequence to store. The first byte specified is stored at the

lowest address.
• Increment is optional and allows the value of Code to change by this value with

each repetition (if requested).
• Address is the location to store this code, or the first repetition thereof.
• Interval is optional and specifies the address shift per repetition of this code.
• Repetitions is optional and specifies the number of times to repeat this code.
All numerical arguments are assumed to be hexadecimal values, except for the
Repetitions argument, which is decimal value by default.
For example:
-SERIAL=000001@EFFE

will store HEX code 00001h to address EFFEh.
Another example:
-SERIAL=0000+2@1000+10r5

will store 5 codes, beginning with value 0000 at address 1000h. Subsequent codes
will appear at address intervals of +10h and the code value will change in increments
of +2h.

4.3.1.21 -SIZE

Using the -SIZE option will report the number of bytes of data within the resultant HEX
image to standard output. The size will also be recorded in the log file if one has been
requested.
DS50002750A-page 116  2012-2018 Microchip Technology Inc.

Utilities
4.3.1.22 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this
option is:
-STRING@Address [tCode]=”Text”

where:
• Address is assumed to be a hexadecimal value representing the address at

which the string will be stored.
• Code is optional and allows a byte sequence to trail each byte in the string. This

can allow the bytes of the string to be encoded within an instruction.
• Text is the string to convert to ASCII and embed.
For example:
-STRING@1000=”My favorite string”

will store the ASCII data for the string, My favorite string (including the null
character terminator), at address 1000h.
And again:
-STRING@1000t34=”My favorite string”

will store the same string, trailing every byte in the string with the HEX code 34h.

4.3.1.23 -STRPACK

This option performs the same function as -STRING, but with two important differ-
ences. First, only the lower seven bits from each character are stored. Pairs of 7-bit
characters are then concatenated and stored as a 14-bit word rather than in separate
bytes. This is known as string packing. This is usually only useful for devices where pro-
gram space is addressed as 14-bit words. The second difference is that -STRING’s t
specifier is not applicable with the -STRPACK option.

4.3.2 Hash Functions
A hash value is a small fixed-size value that is calculated from, and used to represent,
all the values in an arbitrary-sized block of data. If that data block is copied, a hash
recalculated from the new block can be compared to the original hash. Agreement
between the two hashes provides a high level of certainty that the copy is valid. There
are many hash algorithms. More complex algorithms provide a more robust verification,
but could use too many resources when used in an embedded environment.
hexmate can be used to calculate the hash of a program image that is contained in a
HEX file built by the MPLAB XC8 compiler. This hash can be embedded into that HEX
file and burned into the target device along with the program image. At runtime, the tar-
get device might be able to run a similar hash algorithm over the program image, now
stored in its memory. If the stored and calculated hashes are the same, the embedded
program can assume that it has a valid program image to execute.
hexmate implements several checksum and cyclic redundancy check algorithms to
calculate the hash. The option to select the algorithm is described in
Section 4.3.1.10 “-CK”. In the discussion of the algorithms below, it is assumed you are
using the compiler driver to request a checksum or CRC.
Some consideration is required when program images contain unused memory loca-
tions. Typically unused locations should be filled with a known value to ensure consis-
tency between results.
The following sections provide examples of the algorithms that can be used to calculate
the hash at runtime.
 2012-2018 Microchip Technology Inc. DS50002750A-page 117

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
4.3.3 Addition Algorithms
hexmate has several simple checksum algorithms that sum data values over a range
in the program image. These algorithms correspond to the algorithm selector values 1,
2, 3, and 4, and they read the data in the program image as 1, 2, 3 or 4 byte quantities,
respectively. This summation is added to an initial value (offset) that is supplied to the
algorithm via the same option. The width to which the final checksum is truncated is
also specified by this option and can be 1, 2, 3, or 4 bytes. hexmate will automatically
store the checksum in the HEX file at the address specified in the checksum option.
Specify a hexmate option similar to the following for a 2-byte-wide checksum to be cal-
culated from the addition of 1-byte-wide values over the address range 0x100 to 0x7fd,
starting with an offset of 0x20. The checksum will be stored at 0x7fe and 0x7ff in little
endian format.
-CK=100-7fd@7fe+20g1w-2

The function shown below can be customized to work with any combination of data size
(readType) and checksum width (resultType).
typedef unsigned char readType; // size of data values read and summed
typedef unsigned int resultType; // size of checksum result

// add to offset n additions of values starting at address data,
// truncating and returning the result
// data: the address of the first value to sum
// n: the number of sums to perform
// offset: the intial value to which the sum is added
resultType ck_add(const readType *data, unsigned n, resultType offset)
{
 resultType chksum;

 chksum = offset;
 while(n--) {
 chksum += *data;
 data++;
 }
 return chksum;
}

The readType and resultType type definitions should be adjusted to suit the data
read/sum width and checksum result width, respectively. When using MPLAB XC8 and
for a size of 1, use a char type; for a size of 4, use a long type, etc., or consider using
the exact-width types provided by <stdint.h>. If you never use an offset, that param-
eter can be removed and chksum assigned 0 before the loop.
hexmate can calculate a checksum over any address range; however, the test func-
tion, ck_add, assumes that the start and end address of the range being summed are
a multiple of the readType width. (Clearly this is a non-issue if the size of readType
is 1.) It is recommended that your checksum specification adheres to this assumption,
otherwise you will need to modify the test code to perform partial reads of the starting
and/or ending data values. This will significantly increase the code complexity.
DS50002750A-page 118  2012-2018 Microchip Technology Inc.

Utilities
4.3.4 Subtraction Algorithms
hexmate has several checksum algorithms that subtract data values over a range in
the program image. These algorithms correspond to the algorithm selector values -1,
-2, -3, and -4, and they read the data in the program image as 1-, 2-, 3- or 4-byte quan-
tities, respectively. In other respects, these algorithms are identical to the addition algo-
rithms described in Section 4.3.3 “Addition Algorithms”.
Specify a hexmate option similar to the following for a 4-byte-wide checksum to be cal-
culated from the addition of 2-byte-wide values over the address range 0x0 to 0x7fd,
starting with an offset of 0x0. The checksum will be stored at 0x7fe and 0x7ff in little
endian format.
-CK=0-7fd@7feg-2w-4

The function shown below can be customized to work with any combination of data size
(readType) and checksum width (resultType).
typedef unsigned char readType; // size of data values read and summed
typedef unsigned int resultType; // size of checksum result

// add to offset n subtractions of values starting at address data,
// truncating and returning the result
// data: the address of the first value to subtract
// n: the number of subtractions to perform
// offset: the intial value to which the subtraction is added
resultType ck_sub(const readType *data, unsigned n, resultType offset)
{
 resultType chksum;

 chksum = offset;
 while(n--) {
 chksum -= *data;
 data++;
 }
 return chksum;
}

 2012-2018 Microchip Technology Inc. DS50002750A-page 119

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
4.3.5 Fletcher Algorithms
hexmate has several algorithms that implement Fletcher’s checksum. These algo-
rithms are more complex, providing a robustness approaching that of a cyclic redun-
dancy check, but with less computational effort. There are two forms of this algorithm
which correspond to the selector values 7 and 8 in the algorithm suboption, which
also implement a 1-byte calculation and 2-byte result, as well as a 2-byte calculation
and 4-byte result, respectively. hexmate will automatically store the checksum in the
HEX file at the address specified in the checksum option.
The function shown below performs a 1-byte-wide addition and produces a 2-byte
result.
unsigned int
fletcher8(const unsigned char * data, unsigned int n)
{
 unsigned int sum = 0xff, sumB = 0xff;
 unsigned char tlen;

 while (n) {
 tlen = n > 20 ? 20 : n;
 n -= tlen;
 do {
 sumB += sum += *data++;
 } while (--tlen);
 sum = (sum & 0xff) + (sum >> 8);
 sumB = (sumB & 0xff) + (sumB >> 8);
 }
 sum = (sum & 0xff) + (sum >> 8);
 sumB = (sumB & 0xff) + (sumB >> 8);

 return sumB << 8 | sum;
}

The code for the 2-byte-addition Fletcher algorithm, producing a 4-byte result is shown
below.
unsigned long
fletcher16(const unsigned int * data, unsigned n)
{

unsigned long sum = 0xffff, sumB = 0xffff;
unsigned tlen;

while (n) {
tlen = n > 359 ? 359 : n;
n -= tlen;
do {

sumB += sum += *data++;
} while (--tlen);
sum = (sum & 0xffff) + (sum >> 16);
sumB = (sumB & 0xffff) + (sumB >> 16);

}
sum = (sum & 0xffff) + (sum >> 16);
sumB = (sumB & 0xffff) + (sumB >> 16);

return sumB << 16 | sum;
}

DS50002750A-page 120  2012-2018 Microchip Technology Inc.

Utilities
4.3.6 CRC Algorithms
hexmate has several algorithms that implement the robust cyclic redundancy checks
(CRC). There is a choice of two algorithms that correspond to the selector values 5 and
-5 in the algorithm suboption, and that implement a CRC calculation and reflected CRC
calculation, respectively. The reflected algorithm works on the least significant bit of the
data first. The polynomial to be used and the initial value can be specified in the option.
hexmate will automatically store the CRC result in the HEX file at the address specified
in the checksum option.
The function shown below can be customized to work with any result width
(resultType). It calculates a CRC hash value using the polynomial specified by the
POLYNOMIAL macro.
typedef unsigned int resultType;
#define POLYNOMIAL 0x1021
#define WIDTH (8 * sizeof(resultType))
#define MSb ((resultType)1 << (WIDTH - 1))

resultType
crc(const unsigned char * data, unsigned n, resultType remainder) {
 unsigned pos;
 unsigned char bitp;

 for (pos = 0; pos != n; pos++) {
 remainder ^= ((resultType)data[pos] << (WIDTH - 8));
 for (bitp = 8; bitp > 0; bitp--) {
 if (remainder & MSb) {
 remainder = (remainder << 1) ^ POLYNOMIAL;
 } else {
 remainder <<= 1;
 }
 }
 }

 return remainder;
}

The resultType type definition should be adjusted to suit the result width. When
using MPLAB XC8 and for a size of 1, use a char type; for a size of 4, use a long type,
etc., or consider using the exact-width types provided by <stdint.h>.
Here is how this function might be used when, for example, a 2-byte-wide CRC hash
value is to be calculated values over the address range 0x0 to 0xFF, starting with an
initial value of 0xFFFF. The result is to be stored at 0x100 and 0x101 in little endian
format.
-CK=0-FF@100+0xFFFFg5w-2p0x1021

The reflected CRC result can be calculated by reflecting the input data and final result,
or by reflecting the polynomial. The functions shown below can be customized to work
with any result width (resultType). The crc_reflected_IO() function calculates
a reflected CRC hash value by reflecting the data stream bit positions. The
crc_reflected_poly() function does not adjust the data stream but reflects
instead the polynomial, which in both functions is specified by the POLYNOMIAL macro.
Both functions use the reflect() function to perform bit reflection.
typedef unsigned int resultType;
typedef unsigned char readType;
typedef unsigned int reflectWidth;

// This is the polynomial used by the CRC-16 algorithm we are using.
#define POLYNOMIAL 0x1021
 2012-2018 Microchip Technology Inc. DS50002750A-page 121

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU

#define WIDTH (8 * sizeof(resultType))
#define MSb ((resultType)1 << (WIDTH - 1))
#define LSb (1)

#define REFLECT_DATA(X) ((readType) reflect((X), 8))
#define REFLECT_REMAINDER(X) (reflect((X), WIDTH))

reflectWidth
reflect(reflectWidth data, unsigned char nBits)
{
 reflectWidth reflection = 0;
 reflectWidth reflectMask = (reflectWidth)1 << nBits - 1;
 unsigned char bitp;

 for (bitp = 0; bitp != nBits; bitp++) {
 if (data & 0x01) {
 reflection |= reflectMask;
 }
 data >>= 1;
 reflectMask >>= 1;
 }

 return reflection;
}

DS50002750A-page 122  2012-2018 Microchip Technology Inc.

Utilities
resultType
crc_reflected_IO(const unsigned char * data, unsigned n, resultType
remainder) {
 unsigned pos;
 unsigned char reflected;
 unsigned char bitp;

 for (pos = 0; pos != n; pos++) {
 reflected = REFLECT_DATA(data[pos]);
 remainder ^= ((resultType)reflected << (WIDTH - 8));

 for (bitp = 8; bitp > 0; bitp--) {
 if (remainder & MSb) {
 remainder = (remainder << 1) ^ POLYNOMIAL;
 } else {
 remainder <<= 1;
 }
 }
 }
 remainder = REFLECT_REMAINDER(remainder);

 return remainder;
}

resultType
crc_reflected_poly(const unsigned char * data, unsigned n, resultType
remainder) {
 unsigned pos;
 unsigned char bitp;
 resultType rpoly;

 rpoly = reflect(POLYNOMIAL, WIDTH);
 for (pos = 0; pos != n; pos++) {
 remainder ^= data[pos];

 for (bitp = 8; bitp > 0; bitp--) {
 if (remainder & LSb) {
 remainder = (remainder >> 1) ^ rpoly;
 } else {
 remainder >>= 1;
 }
 }
 }

 return remainder;
}

Here is how this function might be used when, for example, a 2-byte-wide reflected
CRC result is calculated over the address range 0x0 to 0xFF, starting with an initial
value of 0xFFFF. The result is to be stored at 0x100 and 0x101 in little endian format.
The following option is specified when building the project. (Note the algorithm selected
is negative 5 in this case.)
-CK=0-FF@100+0xFFFFg-5w-2p0x1021
 2012-2018 Microchip Technology Inc. DS50002750A-page 123

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
4.4 OBJDUMP
The avr-objdump application can display various information about object files.
The general form of the tool’s command line is as follows:
avr-objdump [options] objfiles

where objfiles can be any object file, including an archive or output file. The tool is
able to determine the format of the file specified.
The --help option shows all the command available for avr-objdump.
A common usage of this tool is to obtain a full list file for the entire program. To do this,
use the compiler’s -g option when you build the project, then call the avr-objdump
application with a command similar to the following.
avr-objdump.exe -S -l a.out > avr.lst

This will create an avr.lst listing file from the default compiler output file, showing the
original C source code and line number information in the listing.
DS50002750A-page 124  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR MCU

Appendix A. Library Functions
A.1 INTRODUCTION
The functions and preprocessor macros within the standard compiler library are
alphabetically listed in this chapter.
The synopsis indicates the header file in which a declaration or definition for function
or macro is found. It also shows the function prototype for functions, or the equivalent
prototype for macros.
Note that where printf() is shown in example code, this assumes that the putch()
function has been defined to suit the peripheral that will act as the stdout stream.
Initialization of that peripheral must also be performed before you attempt to print.
For each built-in function for AVR, there is an equally named, uppercase built-in macro
defined. That way users can easily query if or if not a specific built-in is implemented or
not. For example, if __builtin_avr_nop is available the macro __BUILTIN_AVR_NOP is
defined to 1 and undefined otherwise.

TABLE A-1: DECLARATIONS PROVIDED BY <ALLOCA.H>
Name Definition

alloca void * alloca (size_t __size)

TABLE A-2: DECLARATIONS PROVIDED BY <ASSERT.H>
Name Definition

assert void assert(scalar expression)

TABLE A-3: DECLARATIONS PROVIDED BY <CTYPE.H>
Name Definition

isalnum int isalnum(int c);

isalpha int isalpha(int c);

isblank int isblank(int c);

iscntrl int iscntrl(int c);

isdigit int isdigit(int c);

isgraph int isgraph(int c);

islower int islower(int c);

isprint int isprint(int c);

ispunct int ispunct(int c);

isspace int isspace(int c);

isupper int isupper(int c);

isxdigit int isxdigit(int c);

toascii int toascii (int __c)
 2012-2018 Microchip Technology Inc. DS50002750A-page 125

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Those macros defined by <float.h>, below, that contain XXX are defined for float
and double types, and XXX can be either of FLT or DBL, respectively.

Those macros defined by <inttypes.h>, shown below, that contain PPP are defined
as the placeholder string for printing intmax_t and intptr_t types, and PPP can be
either of MAX or PTR, respectively. Those macros below that contain YYYY are defined
as the placeholder string for printing intn_t, intleastn_t and intfastn_t types
(where n is the size, in bytes, of the type) and YYYY can be either of <empty>, LEAST
or FAST, respectively. For example PRIdLEAST16 could be used as the placeholder
string for a value with int_least16_t type.

tolower int tolower(int c);

toupper int toupper(int c);

TABLE A-3: DECLARATIONS PROVIDED BY <CTYPE.H>
Name Definition

TABLE A-4: DECLARATIONS PROVIDED BY <ERRNO.H>
Name Definition

EDOM

EILSEQ

ERANGE

errno

TABLE A-5: DECLARATIONS PROVIDED BY <FLOAT.H>
Name Definition

FLT_RADIX 2

FLT_ROUNDS 1
FLT_EVAL_METHOD 0
DECIMAL_DIG 9
XXX_MAX 3.40282346639e+38
XXX_MIN 1.17549435082e-38
XXX_MIN_EXP -125
XXX_MIN_10_EXP -37
XXX_MAX_EXP 128
XXX_MAX_10_EXP 38
XXX_DIG 6
XXX_MANT_DIG 24
XXX_EPSILON 1.19209289551e-07

TABLE A-6: DECLARATIONS PROVIDED BY C99 <INTTYPES.H>
Name Definition

PRIdPPP

PRIdYYYYn

PRIiPPP

PRIiYYYYn

PRIoPPP

PRIoYYYYn

PRIuPPP
DS50002750A-page 126  2012-2018 Microchip Technology Inc.

Library Functions
PRIuYYYYn

PRIxPPP

PRIxYYYYn

PRIXPPP

PRIXYYYYn

SCNdPPP

SCNdYYYYn

SCNiPPP

SCNiYYYYn

SCNoPPP

SCNoYYYYn

SCNuPPP

SCNuYYYYn

SCNxPPP

SCNxYYYYn

int_farptr_t

unit_farptr_t

TABLE A-6: DECLARATIONS PROVIDED BY C99 <INTTYPES.H>
Name Definition

TABLE A-7: DECLARATIONS PROVIDED BY C99 <ISO646.H>
Name Definition

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=
 2012-2018 Microchip Technology Inc. DS50002750A-page 127

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
The long long types are 64-bit C99 Standard types when building for PIC18 devices,
but when compiling to the C90 Standard or for any other device, this implementation
limits their size to only 32 bits.

TABLE A-8: DECLARATIONS PROVIDED BY <LIMITS.H>
Name C99 PIC18 Definition All other Definitions

CHAR_BIT 8 8

CHAR_MAX 255 255

CHAR_MIN 0 0

SCHAR_MAX 127 127

SCHAR_MIN -128 -128

UCHAR_MAX 255 255

SHRT_MAX 32767 32767

SHRT_MIN -32768 -32768

USHRT_MAX 65535 65535

INT_MAX 32767 32767

INT_MIN -32768 -32768

UINT_MAX 65535 65535

SHRTLONG_MAX 8388607 8388607

SHRTLONG_MIN -8388608 -8388608

USHRTLONG_MAX 16777215 16777215

LONG_MAX 2147483647 2147483647

LONG_MIN -2147483648 -2147483648

ULONG_MAX 4294967295 4294967295

LLONG_MAX 9223372036854775807 2147483647

LLONG_MIN -9223372036854775808 -2147483648

ULLONG_MAX 18446744073709551615 4294967295

TABLE A-9: DECLARATIONS DEFINED BY <MATH.H>
Name Definition

M_E 2.7182818284590452354

M_LOG2E 1.4426950408889634074

M_LOG10E 0.43429448190325182765

M_LN2 0.69314718055994530942

M_LN10 2.30258509299404568402

M_PI 3.14159265358979323846

M_PI_2 1.57079632679489661923

M_PI_4 0.78539816339744830962

M_1_PI 0.31830988618379067154

M_2_PI 0.63661977236758134308

M_2_SQRTPI 1.12837916709551257390

M_SQRT2 1.41421356237309504880

M_SQRT1_2 0.70710678118654752440
DS50002750A-page 128  2012-2018 Microchip Technology Inc.

Library Functions
INFINITY __builtin_inf()

NAN __builtin_nan("")

isfinite int isfinite(real-floating x);

isinf int isinf(real-floating x);

isnan int isnan(real-floating x);

signbit int signbit(real-floating x);

acos double acos(double x);

acosf float acosf(float x);

asin double asin(double x);

asinf float asinf(float x);

atan double atan(double x);

atanf float atanf(float x);

atan2 double atan2(double y, double x);

atan2f float atan2f(float y, float x);

cos double cos(double x);

cosf float cosf(float x);

sin double sin(double x);

sinf float sinf(float x);

tan double tan(double x);

tanf float tanf(float x);

acosh double acosh(double x);

acoshf float acoshf(float x);

asinh double asinh(double x);

asinhf float asinhf(float x);

atanh double atanh(double x);

atanhf float atanhf(float x);

cosh double cosh(double x);

coshf float coshf(float x);

sinh double sinh(double x);

sinhf float sinhf(float x);

tanh double tanh(double x);

tanhf float tanhf(float x);

exp double exp(double x);

expf float expf(float x);

frexp double frexp(double value, int *exp);

frexpf float frexpf(float value, int *exp);

ldexp double ldexp(double x, int exp);

ldexpf float ldexpf(float x, int exp);

log double log(double x);

logf float logf(float x);

log10 double log10(double x);

log10f float log10f(float x);

TABLE A-9: DECLARATIONS DEFINED BY <MATH.H>
Name Definition
 2012-2018 Microchip Technology Inc. DS50002750A-page 129

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
modf double modf(double value, double *iptr);

modff float modff(float value, float *iptr);

cbrt double cbrt(double x);

cbrtf float cbrtf(float x);

fabs double fabs(double x);

fabsf float fabsf(float x);

hypot double hypot(double x, double y);

hypotf float hypotf(float x, float y);

pow double pow(double x, double y);

powf float powf(float x, float y);

sqrt double sqrt(double x);

sqrtf float sqrtf(float x);

ceil double ceil(double x);

ceilf float ceilf(float x);

floor double floor(double x);

floorf float floorf(float x);

lrint long int lrint(double x);

lrintf long int lrintf(float x);

round double round(double x);

roundf float roundf(float x);

lround long int lround(double x);

lroundf long int lroundf(float x);

trunc double trunc(double x);

truncf float truncf(float x);

fmod double fmod(double x, double y);

fmodf float fmodf(float x, float y);

copysign double copysign(double x, double y);

copysignf float copysignf(float x, float y);

fdim double fdim(double x, double y);

fdimf float fdimf(float x, float y);

fmax double fmax(double x, double y);

fmaxf float fmaxf(float x, float y);

fmin double fmin(double x, double y);

fminf float fminf(float x, float y);

fma double fma(double x, double y, double z);

fmaf float fmaf(float x, float y, float z);

TABLE A-9: DECLARATIONS DEFINED BY <MATH.H>
Name Definition

TABLE A-10: DECLARATIONS PROVIDED BY <SETJMP.H>
Name Definition

jmp_buf

setjmp int setjmp(jmp_buf env);
DS50002750A-page 130  2012-2018 Microchip Technology Inc.

Library Functions
longjmp void longjmp(jmp_buf env, int val);

TABLE A-10: DECLARATIONS PROVIDED BY <SETJMP.H>
Name Definition

TABLE A-11: DECLARATIONS PROVIDED BY <STDARG.H>
Name Definition

va_list

va_arg type va_arg(va_list ap, type);

va_copy void va_copy(va_list dest, va_list src);

va_end void va_end(va_list ap);

va_start void va_start(va_list ap, parmN);
 2012-2018 Microchip Technology Inc. DS50002750A-page 131

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Those macros defined by <stdint.h>, below, that contain N are defined for different
sized types and N can be either of 8, 16, 32, or 64.

TABLE A-12: DECLARATIONS PROVIDED BY C99 <STDBOOL.H>
Name Definition

bool _Bool

true 1

false 0

__bool_true_false_are_defined 1

TABLE A-13: DECLARATIONS PROVIDED BY <STDDEF.H>
Name Definition

NULL

ptrdiff_t

size_t

offsetof offsetof(type, member-designator)

TABLE A-14: DECLARATIONS PROVIDED BY C99 <STDINT.H>
Name Definition

INTN_MIN

INTN_MAX

UINTN_MAX

INT_LEASTN_MIN

INT_LEASTN_MAX

UINT_LEASTN_MAX

INT_FASTN_MIN

INT_FASTN_MAX

UINT_FASTN_MAX

INTPTR_MIN

INTPTR_MAX

UINTPTR_MAX

INTMAX_MIN

INTMAX_MAX

UINTMAX_MAX

PTRDIFF_MIN

PTRDIFF_MAX

SIG_ATOMIC_MIN

SIG_ATOMIC_MAX

SIZE_MAX

INTN_C INTN_C(value)

UINTN_C UINTN_C(value)

INTMAX_C INTMAX_C(value)

UINTMAX_C UINTMAX_C(value)
DS50002750A-page 132  2012-2018 Microchip Technology Inc.

Library Functions
intN_t

uintN_t

int_leastN_t

uint_leastN_t

int_fastN_t

uint_fastN_t

intptr_t

uintptr_t

intmax_t

uintmax_t

TABLE A-14: DECLARATIONS PROVIDED BY C99 <STDINT.H>
Name Definition

TABLE A-15: DECLARATIONS PROVIDED BY <STDIO.H>
Name Definition

EOF (-1)

FILE Macro

fpos_t

putc int putc(int c, FILE *stream);

putchar int putchar(int c);

getc int getc(FILE *stream);

getchar int getchar(void);

fdev_set_udata fdev_set_udata(stream, u)

fdev_get_udata fdev_get_udata(stream)

fdev_setup_stream fdev_setup_stream(stream, put, get, rwflag)

_FDEV_SETUP_READ __SRD

_FDEV_SETUP_WRITE __SWR

_FDEV_SETUP_RW (__SRD|__SWR)

_FDEV_ERR (-1)

_FDEV_EOF (-2)

FDEV_SETUP_STREAM FDEV_SETUP_STREAM(put, get, rwflag)

size_t

stderr (__iob[2])

stdin (__iob[0])

stdout (__iob[1])

fclose int fclose(FILE *stream);

fflush int fflush(FILE *stream);

fdevopen FILE *fdevopen((int(*put)(char, FILE *), int(*get)(FILE *));

freopen FILE *freopen(int(*put)(char, FILE *), int(*get)(FILE *));

fprintf int fprintf(FILE * restrict stream,
 const char * restrict format, ...);

fscanf int fscanf(FILE * restrict stream,
 const char * restrict format, ...);

printf int printf(const char * restrict format, ...);
 2012-2018 Microchip Technology Inc. DS50002750A-page 133

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
scanf int scanf(const char * restrict format, ...);

snprintf int snprintf(char * restrict s, size_t n,
 const char * restrict format, ...);

sprintf int sprintf(char * restrict s,
 const char * restrict format, ...);

sscanf int sscanf(const char * restrict s,
 const char * restrict format, ...);

vfprintf int vfprintf(FILE * restrict stream,
 const char * restrict format, va_list arg);

vfscanf int vfscanf(FILE * restrict stream,
 const char * restrict format, va_list arg);

vprintf int vprintf(const char * restrict format, va_list arg);

vscanf int vscanf(const char * restrict format, va_list arg);

vsnprintf int vsnprintf(char * restrict s, size_t n,
 const char * restrict format, va_list arg);

vsprintf int vsprintf(char * restrict s,
 const char * restrict format, va_list arg);

vsscanf int vsscanf(const char * restrict s,
 const char * restrict format, va_list arg);

fgetc int fgetc(FILE *stream);

fgets char *fgets(char * restrict s, int n,
 FILE * restrict stream);

fputc int fputc(int c, FILE *stream);

fputs int fputs(const char * restrict s,
 FILE * restrict stream);

gets char *gets(char *s);

puts int puts(const char *s);

ungetc int ungetc(int c, FILE *stream);

fread size_t fread(void * restrict ptr, size_t size, size_t nmemb,
 FILE * restrict stream);

fwrite size_t fwrite(const void * restrict ptr,
 size_t size, size_t nmemb,
 FILE * restrict stream);

clearerr void clearerr(FILE *stream);

feof int feof(FILE *stream);

ferror int ferror(FILE *stream);

TABLE A-15: DECLARATIONS PROVIDED BY <STDIO.H>
Name Definition
DS50002750A-page 134  2012-2018 Microchip Technology Inc.

Library Functions
TABLE A-16: DECLARATIONS PROVIDED BY <STDLIB.H>
Name Definition

NULL

EXIT_FAILURE

EXIT_SUCCESS

RAND_MAX

size_t

div_t

ldiv_t

RAND_MAX

DTOSTR_ALWAYS_SIGN 0x01

DTOSTR_PLUS_SIGN 0x02

DTOSTR_UPPERCASE 0x04

__malloc_margin

__malloc_heap_start

__malloc_heap_end

RANDOM_MAX

ltoa char * ltoa (long val, char *s, int radix)

utoa char * utoa (unsigned int val, char *s, int radix)

ultoa char * ultoa (unsigned long val, char *s, int radix)

itoa char * itoa (int val, char *s, int radix)

random long random (void)

srandom void srandom (unsigned long __seed)

random_r long random_r (unsigned long *__ctx)

__compar_fn_t) (const void *, const void *)

atof double atof(const char *nptr);

atoi int atoi(const char *nptr);

atol long int atol(const char *nptr);

strtod double strtod(const char * restrict nptr,
 char ** restrict endptr);

strtol long int strtol(const char * restrict nptr,
 char ** restrict endptr, int base);

strtoul unsigned long int strtoul(const char * restrict nptr,
 char ** restrict endptr, int base);

rand int rand(void);

srand void srand(unsigned int seed);

abort void abort(void);

exit void exit(int status);

bsearch void *bsearch(const void *key, const void *base,
 size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

qsort void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

abs int abs(int j);
 2012-2018 Microchip Technology Inc. DS50002750A-page 135

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
labs long int labs(long int j);

div div_t div(int numer, int denom);

ldiv ldiv_t ldiv(long int numer, long int denom);

_Exit void _Exit(int status);

dtostre char * dtostre (double __val, char *__s, unsigned char __prec,
 unsigned char __flags);

dtostrf char * dtostrf (double __val, signed char __width,
 unsigned char __prec, char *__s);

TABLE A-16: DECLARATIONS PROVIDED BY <STDLIB.H>
Name Definition

TABLE A-17: DECLARATIONS PROVIDED BY <STRING.H>

NULL

size_t

ffs int ffs (int __val);

ffsl int ffsl (long __val);

ffsll int ffsll (long long __val);

memccpy void * memccpy (void *, const void *, int, size_t);

memchr void * memchr (const void *, int, size_t) __ATTR_PURE__;

memcmp int memcmp (const void *, const void *, size_t) __ATTR_PURE__;

memcpy void * memcpy (void *, const void *, size_t);

memmem void * memmem (const void *, size_t, const void *, size_t)
__ATTR_PURE__;

memmove void * memmove (void *, const void *, size_t);

memrchr void * memrchr (const void *, int, size_t) __ATTR_PURE__;

memset void * memset (void *, int, size_t);

strcat char * strcat (char *, const char *);

strchr char * strchr (const char *, int) __ATTR_PURE__;

strchrnul char * strchrnul (const char *, int) __ATTR_PURE__;

strcmp int strcmp (const char *, const char *) __ATTR_PURE__;

strcpy char * strcpy (char *, const char *);

strcasecmp int strcasecmp (const char *, const char *) __ATTR_PURE__;

strcasestr char * strcasestr (const char *, const char *) __ATTR_PURE__;

strcspn size_t strcspn (const char *__s, const char *__reject)
__ATTR_PURE__;

strdup char * strdup (const char *s1);

strlcat size_t strlcat (char *, const char *, size_t);

strlcpy size_t strlcpy (char *, const char *, size_t);

strlen size_t strlen (const char *) __ATTR_PURE__;

strlwr char * strlwr (char *);

strncat char * strncat (char *, const char *, size_t);

strncmp int strncmp (const char *, const char *, size_t) __ATTR_PURE__;

strncpy char * strncpy (char *, const char *, size_t);
DS50002750A-page 136  2012-2018 Microchip Technology Inc.

Library Functions
strncasecmp int strncasecmp (const char *, const char *, size_t)
__ATTR_PURE__;

strnlen size_t strnlen (const char *, size_t) __ATTR_PURE__;

strpbrk char * strpbrk (const char *__s, const char *__accept)
__ATTR_PURE__;

strrchr char * strrchr (const char *, int) __ATTR_PURE__;

strrev char * strrev (char *);

strsep char * strsep (char **, const char *);

strspn size_t strspn (const char *__s, const char *__accept)
__ATTR_PURE__;

strstr char * strstr (const char *, const char *) __ATTR_PURE__;

strtok char * strtok (char *, const char *);

strtok_r char * strtok_r (char *, const char *, char **);

strupr char * strupr (char *);

TABLE A-17: DECLARATIONS PROVIDED BY <STRING.H>

TABLE A-18: DECLARATIONS PROVIDED BY <TIME.H>

NULL

ONE_HOUR 3600

ONE_DEGREE 3600

ONE_DAY 86400

UNIX_OFFSET 946684800

NTP_OFFSET 3155673600

_WEEK_DAYS_

MONTHS

size_t

time_t

tm

week_date

time time_t time (time_t *timer)

difftime int32_t difftime (time_t time1, time_t time0)

mktime time_t mktime (struct tm *timeptr)

mk_gmtime time_t mk_gmtime (const struct tm *timeptr)

gmtime struct tm * gmtime (const time_t *timer)

gmtime_r void gmtime_r (const time_t *timer, struct tm *timeptr)

localtime struct tm * localtime (const time_t *timer)

localtime_r void localtime_r (const time_t *timer, struct tm *timeptr)

asctime char * asctime (const struct tm *timeptr)

asctime_r void asctime_r (const struct tm *timeptr, char *buf)

ctime char * ctime (const time_t *timer)

ctime_r void ctime_r (const time_t *timer, char *buf)

isotime char * isotime (const struct tm *tmptr)
 2012-2018 Microchip Technology Inc. DS50002750A-page 137

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
The macros and functions provided by <xc.h> are device-specified and are described
in the sections that follow Table A-19.

isotime_r void isotime_r (const struct tm *, char *)

strftime size_t strftime (char *s, size_t maxsize, const char *for-
mat, const struct tm *timeptr)

set_dst void set_dst (int(*)(const time_t *, int32_t *))

set_zone void set_zone (int32_t)

set_system_time void set_system_time (time_t timestamp)

system_tick void system_tick (void)

is_leap_year uint8_t is_leap_year (int16_t year)

month_length uint8_t month_length (int16_t year, uint8_t month)

week_of_year uint8_t week_of_year (const struct tm *timeptr, uint8_t
start)

week_of_month uint8_t week_of_month (const struct tm *timeptr,
 uint8_t start)

week_date struct week_date * iso_week_date (int year, int yday)

iso_week_date_r void iso_week_date_r (int year, int yday, struct week_date *)

fatfs_time uint32_t fatfs_time (const struct tm *timeptr)

set_position void set_position (int32_t latitude, int32_t longitude)

equation_of_time int16_t equation_of_time (const time_t *timer)

daylight_seconds int32_t daylight_seconds (const time_t *timer)

solar_noon time_t solar_noon (const time_t *timer)

sun_rise time_t sun_rise (const time_t *timer)

sun_set time_t sun_set (const time_t *timer)

solar_declination double solar_declination (const time_t *timer)

moon_phase int8_t moon_phase (const time_t *timer)

gm_sidereal unsigned long gm_sidereal (const time_t *timer)

lm_sidereal unsigned long lm_sidereal (const time_t *timer)

TABLE A-18: DECLARATIONS PROVIDED BY <TIME.H>

TABLE A-19: DECLARATIONS PROVIDED BY <XC.H>
Name Definition

di

ei

CRLWDT

EEPROM_READ EEPROM_READ(address)

EEPROM_WRITE EEPROM_WRITE(address, value)

NOP

READTIMERX

RESET

SLEEP

WRITETIMERX WRITETIMER(value)

eeprom_read unsigned char eeprom_read(unsigned char address);
DS50002750A-page 138  2012-2018 Microchip Technology Inc.

Library Functions
eeprom_write void eeprom_write(unsigned char address,
 unsigned char value);

__debug_break

___mkstr ___mkstr(value)

__EEPROM_DATA __EEPROM_DATA(a, b, c, d, e, f, g, h)

get_cal_data double get_cal_data(const unsigned char *);

_delay _delay(n)

_delaywdt _delaywdt(n)

_delay3 _delay3(n)

__builtin_software_breakpoint void __builtin_software_breakpoint(void);

__delay_ms __delay_ms(time)

__delay_us __delay_us(time)

__delaywdt_ms __delaywdt_ms(time)

__delaywdt_us __delaywdt_us(time)

__fpnormalize double __fpnormalize(double);

__osccal_val unsigned char __osccal_val(void);

TABLE A-19: DECLARATIONS PROVIDED BY <XC.H>
Name Definition

TABLE A-20: DECLARATIONS PROVIDED BY <AVR/CPUFUNC.H>
Name Definition

_NOP

_MemoryBarrier

TABLE A-21: DECLARATIONS PROVIDED BY <AVR/SFR_DEFS.H>
Name Definition

_BV

bit_is_set bit_is_set(sfr, bit)

bit_is_clear bit_is_clear(sfr, bit)

loop_until_bit_is_set loop_until_bit_is_set(sfr, bit)

loop_until_bit_is_clear loop_until_bit_is_clear(sfr, bit)

TABLE A-22: DECLARATIONS PROVIDED BY <AVR/PGMSPACE.H>
Name Definition

PROGMEM

PGM_P const char *

PGM_VOID_P const void *

PSTR(s) ((const PROGMEM char *)(s))

pgm_read_byte_near pgm_read_byte_near(address_short)

pgm_read_word_near pgm_read_word_near(address_short)

pgm_read_dword_near pgm_read_dword_near(address_short)

pgm_read_float_near pgm_read_float_near(address_short)
 2012-2018 Microchip Technology Inc. DS50002750A-page 139

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
pgm_read_ptr_near pgm_read_ptr_near(address_short)

pgm_read_byte_far pgm_read_byte_far(address_long)

pgm_read_word_far pgm_read_word_far(address_long)

pgm_read_dword_far pgm_read_dword_far(address_long)

pgm_read_float_far pgm_read_float_far(address_long)

pgm_read_ptr_far pgm_read_ptr_far(address_long)

pgm_read_byte pgm_read_byte(address_short)

pgm_read_word pgm_read_word(address_short)

pgm_read_dword pgm_read_dword(address_short)

pgm_read_float pgm_read_float(address_short)

pgm_read_ptr pgm_read_ptr(address_short)

pgm_get_far_address pgm_get_far_address(var)

prog_void void PROGMEM prog_void

prog_char char PROGMEM prog_char

prog_uchar unsigned char PROGMEM prog_uchar

prog_int8_t int8_t PROGMEM prog_int8_t

prog_uint8_t uint8_t PROGMEM prog_uint8_t

prog_int16_t int16_t PROGMEM prog_int16_t

prog_uint16_t uint16_t PROGMEM prog_uint16_t

prog_int32_t int32_t PROGMEM prog_int32_t

prog_uint32_t uint32_t PROGMEM prog_uint32_t

prog_int64_t int64_t PROGMEM prog_int64_t

prog_uint64_t uint64_t PROGMEM prog_uint64_t

memchr_P const void * memchr_P (const void *, int __val,
 size_t __len)

memcmp_P int memcmp_P (const void *, const void *, size_t)
 __ATTR_PURE__

memccpy_P void * memccpy_P (void *, const void *, int __val,
 size_t)

memcpy_P void * memcpy_P (void *, const void *, size_t)

memmem_P void * memmem_P (const void *, size_t, const void *,
 size_t) __ATTR_PURE__

memrchr_P const void * memrchr_P (const void *, int __val,
 size_t __len)

strcat_P char * strcat_P (char *, const char *)

strchr_P const char * strchr_P (const char *, int __val)

strchrnul_P const char * strchrnul_P (const char *, int __val)

strcmp_P int strcmp_P (const char *, const char *) __ATTR_PURE__

strcpy_P char * strcpy_P (char *, const char *)

strcasecmp_P int strcasecmp_P (const char *, const char *)
 __ATTR_PURE__

strcasestr_P char * strcasestr_P (const char *, const char *)
 __ATTR_PURE__

TABLE A-22: DECLARATIONS PROVIDED BY <AVR/PGMSPACE.H>
Name Definition
DS50002750A-page 140  2012-2018 Microchip Technology Inc.

Library Functions
strcspn_P size_t strcspn_P (const char *__s, const char *__reject)
 __ATTR_PURE__

strlcat_P size_t strlcat_P (char *, const char *, size_t)

strlcpy_P size_t strlcpy_P (char *, const char *, size_t)

strnlen_P size_t strnlen_P (const char *, size_t)

strncmp_P int strncmp_P (const char *, const char *, size_t)
 __ATTR_PURE__

strncasecmp_P int strncasecmp_P (const char *, const char *, size_t)
 __ATTR_PURE__

strncat_P char * strncat_P (char *, const char *, size_t)

strncpy_P char * strncpy_P (char *, const char *, size_t)

strpbrk_P char * strpbrk_P (const char *__s, const char *__accept)
 __ATTR_PURE__

strrchr_P const char * strrchr_P (const char *, int __val)

strsep_P char * strsep_P (char **__sp, const char *__delim)

strspn_P size_t strspn_P (const char *__s, const char *__accept)
 __ATTR_PURE__

strstr_P char * strstr_P (const char *, const char *)
 __ATTR_PURE__

strtok_P char * strtok_P (char *__s, const char *__delim)

strtok_rP char * strtok_rP (char *__s, const char *__delim,
 char **__last)

strlen_PF size_t strlen_PF (uint_farptr_t src)

strnlen_PF size_t strnlen_PF (uint_farptr_t src, size_t len)

memcpy_PF void * memcpy_PF (void *dest, uint_farptr_t src,
 size_t len)

strcpy_PF char * strcpy_PF (char *dest, uint_farptr_t src)

strncpy_PF char * strncpy_PF (char *dest, uint_farptr_t src,
 size_t len)

strcat_PF char * strcat_PF (char *dest, uint_farptr_t src)

strlcat_PF size_t strlcat_PF (char *dst, uint_farptr_t src, size_t siz)

strncat_PF char * strncat_PF (char *dest, uint_farptr_t src, size_t len)

strcmp_PF int strcmp_PF (const char *s1, uint_farptr_t s2)
 __ATTR_PURE__

strncmp_PF int strncmp_PF (const char *s1, uint_farptr_t s2, size_t n)
 __ATTR_PURE__

strcasecmp_PF int strcasecmp_PF (const char *s1, uint_farptr_t s2)
 __ATTR_PURE__

strncasecmp_PF int strncasecmp_PF (const char *s1, uint_farptr_t s2,
 size_t n) __ATTR_PURE__

strstr_PF char * strstr_PF (const char *s1, uint_farptr_t s2)

strlcpy_PF size_t strlcpy_PF (char *dst, uint_farptr_t src, size_t siz)

memcmp_PF int memcmp_PF (const void *, uint_farptr_t, size_t)
 __ATTR_PURE__

strlen_P static size_t strlen_P (const char *s)

TABLE A-22: DECLARATIONS PROVIDED BY <AVR/PGMSPACE.H>
Name Definition
 2012-2018 Microchip Technology Inc. DS50002750A-page 141

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
TABLE A-23: DECLARATIONS PROVIDED BY <AVR/IO.H>
Name Definition

RAMEND

XRAMEND

E2END

FLASHEND

SPM_PAGESIZE

E2PAGESIZE

_PROTECTED_WRITE _PROTECTED_WRITE(reg, value)

TABLE A-24: DECLARATIONS PROVIDED BY <AVR/BOOT.H>
Name Definition

BOOTLOADER_SECTION

boot_spm_interrupt_enable

boot_spm_interrupt_disable

boot_is_spm_interrupt

boot_rww_busy

boot_spm_busy

boot_spm_busy_wait

GET_LOW_FUSE_BITS

GET_LOCK_BITS

GET_EXTENDED_FUSE_BITS

GET_HIGH_FUSE_BITS

boot_lock_fuse_bits_get boot_lock_fuse_bits_get(address)

boot_signature_byte_get boot_signature_byte_get(addr)

boot_page_fill boot_page_fill(address, data)

boot_page_erase boot_page_erase(address)

boot_page_write boot_page_write(address)

boot_rww_enable

boot_lock_bits_set boot_lock_bits_set(lock_bits)

boot_page_fill_safe boot_page_fill_safe(address, data)

boot_page_erase_safe boot_page_erase_safe(address)

boot_page_write_safe boot_page_write_safe(address)

boot_rww_enable_safe boot_rww_enable_safe()

boot_lock_bits_set_safe boot_lock_bits_set_safe(lock_bits)

TABLE A-25: DECLARATIONS PROVIDED BY <AVR/SLEEP.H>
Name Defintion

sleep_enable void sleep_enable (void)

sleep_disable void sleep_disable (void)

sleep_cpu void sleep_cpu (void)

sleep_mode void sleep_mode (void)
DS50002750A-page 142  2012-2018 Microchip Technology Inc.

Library Functions
sleep_bod_disable void sleep_bod_disable (void)

TABLE A-25: DECLARATIONS PROVIDED BY <AVR/SLEEP.H>
Name Defintion

TABLE A-26: BUILTIN DECLARATIONS
Name Definition

__builtin_avr_nop void __builtin_avr_nop (void);

__builtin_avr_sei void __builtin_avr_sei (void);

__builtin_avr_cli void __builtin_avr_cli (void);

__builtin_avr_sleep void __builtin_avr_sleep (void);

__builtin_avr_wdr void __builtin_avr_wdr (void);

__builtin_avr_swap unsigned char __builtin_avr_swap (unsigned char);

__builtin_avr_fmul unsigned int __builtin_avr_fmul (unsigned char,
 unsigned char);

__builtin_avr_fmuls int __builtin_avr_fmuls (char, char);

__builtin_avr_fmulsu int __builtin_avr_fmulsu (char, unsigned char);

__builtin_avr_delay_cycles void __builtin_avr_delay_cycles (unsigned long ticks);

__builtin_avr_flash_segment char __builtin_avr_flash_segment (const __memx void*);

__builtin_avr_insert_bits uint8_t __builtin_avr_insert_bits (uint32_t map,
 uint8_t bits, uint8_t val);

__builtin_avr_nops void __builtin_avr_nops (unsigned count);
 2012-2018 Microchip Technology Inc. DS50002750A-page 143

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
NOTES:
DS50002750A-page 144  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR

Appendix B. Implementation-Defined Behavior
B.1 INTRODUCTION

This chapter indicates the compiler’s choice of behavior where that behavior is
implementation defined.

Items discussed in this chapter are:
• Overview
• Translation
• Environment
• Identifiers
• Characters
• Integers
• Floating-Point
• Arrays and Pointers
• Hints
• Structures, Unions, Enumerations, and Bit-Fields
• Qualifiers
• Library Functions
• Architecture

B.2 OVERVIEW

ISO C requires a conforming implementation to document the choices for behaviors
defined in the standard as “implementation-defined.” The following sections list all such
areas, the choices made for the compiler, and the corresponding section number from
the ISO/IEC 9899:1999 (aka C99) standard or ISO/IEC 9899:1990 (aka C90).

B.3 TRANSLATION
ISO Standard: “How a diagnostic is identified (3.10, 5.1.1.3).”
Implementation: By default, when compiling on the command-line the following formats are

used. The string (warning) is only displayed for warning messages.
filename:line:column:{error/warning}: message

ISO Standard: “Whether each nonempty sequence of white-space characters other than
new-line is retained or replaced by one space character in translation
phase 3 (5.1.1.2).”

Implementation: The compiler will replace each leading or interleaved whitespace charac-
ter sequences with a space. A trailing sequence of whitespace characters
is replaced with a new-line.
 2012-2018 Microchip Technology Inc. DS50002750A-page 145

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
B.4 ENVIRONMENT

B.5 IDENTIFIERS

ISO Standard: "The mapping between physical source file multibyte characters and the
source character set in translation phase 1 (5.1.1.2)."

Implementation: Multi-byte characters are not supported in source files.
ISO Standard: “The name and type of the function called at program start-up in a

freestanding environment (5.1.2.1).”
Implementation: int main (void);

ISO Standard: “The effect of program termination in a freestanding environment (5.1.2.1).”
Implementation: Interrupts are disabled and the programs loops indefinitely
ISO Standard: “An alternative manner in which the main function may be defined

(5.1.2.2.1).”
Implementation: void main (void);

ISO Standard: “The values given to the strings pointed to by the argv argument to main
(5.1.2.2.1).”

Implementation: No arguments are passed to main. Reference to argc or argv is
undefined.

ISO Standard: “What constitutes an interactive device (5.1.2.3).”
Implementation: Application defined.
ISO Standard: "The set of signals, their semantics, and their default handling (7.14)."
Implementation: Signals are not implemented.
ISO Standard: "Signal values other than SIGFPE, SIGILL, and SIGSEGV that corre-

spond to a computational exception (7.14.1.1)."
Implementation: Signals are not implemented.
ISO Standard: “Signals for which the equivalent of signal(sig, SIG_IGN); is

executed at program start-up (7.14.1.1).”
Implementation: Signals are not implemented.
ISO Standard: “The set of environment names and the method for altering the

environment list used by the getenv function (7.20.4.5).”
Implementation: The host environment is application defined.
ISO Standard: “The manner of execution of the string by the system function (7.20.4.6).”
Implementation: The host environment is application defined.

ISO Standard: “Which additional multibyte characters may appear in identifiers and their
correspondence to universal character names (6.4.2).”

Implementation: None.
ISO Standard: “The number of significant initial characters in an identifier (5.2.4.1,

6.4.2).”
Implementation: All characters are significant.
DS50002750A-page 146  2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
B.6 CHARACTERS
ISO Standard: “The number of bits in a byte (C90 3.4, C99 3.6).”
Implementation: 8.
ISO Standard: “The values of the members of the execution character set (C90 and C99

5.2.1).”
Implementation: The execution character set is ASCII.
ISO Standard: “The unique value of the member of the execution character set produced

for each of the standard alphabetic escape sequences (C90 and C99
5.2.2).”

Implementation: The execution character set is ASCII.
ISO Standard: “The value of a char object into which has been stored any character

other than a member of the basic execution character set (C90 6.1.2.5,
C99 6.2.5).”

Implementation: The value of the char object is the 8-bit binary representation of the char-
acter in the source character set. That is, no translation is done.

ISO Standard: “Which of signed char or unsigned char has the same range, rep-
resentation, and behavior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99
6.2.5, C99 6.3.1.1).”

Implementation: By default, signed char is functionally equivalent to plain char. Id the
CCI is specified, then the default is unsigned char The options
-funsigned-char and -fsigned-char can be used to explicitly
specify the type.

ISO Standard: “The mapping of members of the source character set (in character con-
stants and string literals) to members of the execution character set (C90
6.1.3.4, C99 6.4.4.4, C90 and C99 5.1.1.2).”

Implementation: The binary representation of the source character set is preserved to the
execution character set.

ISO Standard: “The value of an integer character constant containing more than one
character or containing a character or escape sequence that does not
map to a single-byte execution character (C90 6.1.3.4, C99 6.4.4.4).”

Implementation: The previous value is shifted left by eight, and the bit pattern of the next
character is masked in. The final result is of type int. If the result is larger
than can be represented by an int, a warning diagnostic is issued and
the value truncated to int size.

ISO Standard: “The value of a wide character constant containing more than one multib-
yte character, or containing a multibyte character or escape sequence not
represented in the extended execution character set (C90 6.1.3.4, C99
6.4.4.4).”

Implementation: Multi-byte characters are not supported in source files.
ISO Standard: “The current locale used to convert a wide character constant consisting

of a single multibyte character that maps to a member of the extended
execution character set into a corresponding wide character code (C90
6.1.3.4, C99 6.4.4.4).”

Implementation: Multi-byte characters are not supported in source files.
ISO Standard: “The current locale used to convert a wide string literal into corresponding

wide character codes (C90 6.1.4, C99 6.4.5).”
Implementation: Wide strings are not supported.
ISO Standard: “The value of a string literal containing a multibyte character or escape

sequence not represented in the execution character set (C90 6.1.4, C99
6.4.5).”

Implementation: Multi-byte characters are not supported in source files.
 2012-2018 Microchip Technology Inc. DS50002750A-page 147

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
B.7 INTEGERS
ISO Standard: “Any extended integer types that exist in the implementation (C99 6.2.5).”
Implementation: The __int24 and __uint24 keywords designate a signed and

unsigned, respectively, 24-bit integer type.
ISO Standard: “Whether signed integer types are represented using sign and magnitude,

two’s complement, or one’s complement, and whether the extraordinary
value is a trap representation or an ordinary value (C99 6.2.6.2).”

Implementation: All integer types are represented as two’s complement, and all bit
patterns are ordinary values.

ISO Standard: “The rank of any extended integer type relative to another extended inte-
ger type with the same precision (C99 6.3.1.1).”

Implementation: There are no extended integer types with the same precision.
ISO Standard: “The result of, or the signal raised by, converting an integer to a signed

integer type when the value cannot be represented in an object of that
type (C90 6.2.1.2, C99 6.3.1.3).”

Implementation: When converting value X to a type of width N, the value of the result is the
Least Significant N bits of the 2’s complement representation of X. That is,
X is truncated to N bits. No signal is raised.

ISO Standard: “The results of some bitwise operations on signed integers (C90 6.3, C99
6.5).”

Implementation: The right shift operator sign extends signed values. Thus, an object with
the signed int value 0x0124 shifted right one bit will yield the value
0x0092 and the value 0x8024 shifted right one bit will yield the value
0xC012. Right shifts of unsigned integral values always clear the MSb of
the result. Left shifts (<< operator), signed or unsigned, always clear the
LSb of the result.
Other bitwise operations act as if the operand was unsigned.
DS50002750A-page 148  2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
B.8 FLOATING-POINT
ISO Standard: “The accuracy of the floating-point operations and of the library functions

in <math.h> and <complex.h> that return floating-point results (C90
and C99 5.2.4.2.2).”

Implementation: The accuracy is unknown.
ISO Standard: “The rounding behaviors characterized by non-standard values of

FLT_ROUNDS (C90 and C99 5.2.4.2.2).”
Implementation: No such values are used.
ISO Standard: “The evaluation methods characterized by non-standard negative values

of FLT_EVAL_METHOD (C90 and C99 5.2.4.2.2).”
Implementation: No such values are used.
ISO Standard: “The direction of rounding when an integer is converted to a floating-point

number that cannot exactly represent the original value (C90 6.2.1.3, C99
6.3.1.4).”

Implementation: The integer is rounded to the nearest floating point representation.
ISO Standard: “The direction of rounding when a floating-point number is converted to a

narrower floating-point number (C90 6.2.1.4, 6.3.1.5).”
Implementation: A floating-point number is rounded down when converted to a narrow

floating-point value.
ISO Standard: “How the nearest representable value or the larger or smaller represent-

able value immediately adjacent to the nearest representable value is
chosen for certain floating constants (C90 6.1.3.1, C99 6.4.4.2).”

Implementation: Not applicable; FLT_RADIX is a power of 2.
ISO Standard: “Whether and how floating expressions are contracted when not disal-

lowed by the FP_CONTRACT pragma (C99 6.5).”
Implementation: The pragma is not implemented.
ISO Standard: “The default state for the FENV_ACCESS pragma (C99 7.6.1).”
Implementation: This pragma is not implemented.
ISO Standard: “Additional floating-point exceptions, rounding modes, environments, and

classifications, and their macro names (C99 7.6, 7.12).”
Implementation: None supported.
ISO Standard: “The default state for the FP_CONTRACT pragma (C99 7.12.2).”
Implementation: This pragma is not implemented.
ISO Standard: “Whether the “inexact” floating-point exception can be raised when the

rounded result actually does equal the mathematical result in an IEC
60559 conformant implementation (C99 F.9).”

Implementation: The exception is not raised.
ISO Standard: “Whether the “underflow” (and “inexact”) floating-point exception can be

raised when a result is tiny but not inexact in an IEC 60559 conformant
implementation (C99 F.9).”

Implementation: The exception is not raised.
 2012-2018 Microchip Technology Inc. DS50002750A-page 149

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
B.9 ARRAYS AND POINTERS

B.10 HINTS

B.11 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT-FIELDS

ISO Standard: “The result of converting a pointer to an integer or vice versa (C90 6.3.4,
C99 6.3.2.3).”

Implementation: A cast from an integer to a pointer or vice versa results uses the binary
representation of the source type, reinterpreted as appropriate for the
destination type.
If the source type is larger than the destination type, the most significant
bits are discarded. When casting from a pointer to an integer, if the source
type is smaller than the destination type, the result is sign extended.
When casting from an integer to a pointer, if the source type is smaller
than the destination type, the result is extended based on the signedness
of the source type.

ISO Standard: “The size of the result of subtracting two pointers to elements of the same
array (C90 6.3.6, C99 6.5.6).”

Implementation: The signed integer result will have the same size as the pointer operands
in the subtraction.

ISO Standard: “The extent to which suggestions made by using the register stor-
age-class specifier are effective (C90 6.5.1, C99 6.7.1).”

Implementation: The register storage class can be used to locate certain objects in a regis-
ter (see Section 3.5.6 “Variables in Registers”).

ISO Standard: “The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).”

Implementation: A function might be inlined if a PRO-licensed compiler has the optimizers
set to level 2 or higher. In other situations, the function will not be inlined.

ISO Standard: “Whether a “plain” int bit-field is treated as a signed int bit-field or as
an unsigned int bit-field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99
6.7.2.1).”

Implementation: A plain int bit-field is treated as an unsigned integer. The
-fsigned-bitfields option can be used to treat bit-fields as signed.

ISO Standard: “Allowable bit-field types other than _Bool, signed int, and
unsigned int (C99 6.7.2.1).”

Implementation: All integer types are allowed.
ISO Standard: “Whether a bit-field can straddle a storage unit boundary (C90 6.5.2.1,

C99 6.7.2.1).”
Implementation: A bit-field can straddle a storage unit.
ISO Standard: “The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99

6.7.2.1).”
Implementation: The first bit-field defined in a structure is allocated the LSb position in the

storage unit. Subsequent bit-fields are allocated higher-order bits.
ISO Standard: “The alignment of non-bit-field members of structures (C90 6.5.2.1, C99

6.7.2.1).”
Implementation: No alignment is performed.
ISO Standard: “The integer type compatible with each enumerated type (C90 6.5.2.2,

C99 6.7.2.2).”
Implementation: A signed or unsigned int can be chosen to represent an enumerated

type.
DS50002750A-page 150  2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
B.12 QUALIFIERS

B.13 PRE-PROCESSING DIRECTIVES

ISO Standard: “What constitutes an access to an object that has volatile-qualified
type (C90 6.5.3, C99 6.7.3).”

Implementation: Each reference to the identifier of a volatile-qualified object constitutes
one access to the object.

ISO Standard: “How sequences in both forms of header names are mapped to headers
or external source file names (C90 6.1.7, C99 6.4.7).”

Implementation: The character sequence between the delimiters is considered to be a
string which is a file name for the host environment.

ISO Standard: “Whether the value of a character constant in a constant expression that
controls conditional inclusion matches the value of the same character
constant in the execution character set (C90 6.8.1, C99 6.10.1).”

Implementation: Yes.
ISO Standard: “Whether the value of a single-character character constant in a con-

stant expression that controls conditional inclusion may have a negative
value (C90 6.8.1, C99 6.10.1).”

Implementation: Yes.
ISO Standard: “The places that are searched for an included < > delimited header, and

how the places are specified or the header is identified (C90 6.8.2, C99
6.10.2).”

Implementation: The preprocessor searches any directory specified using the -I option,
then, provided the -nostdinc option has not been used, the standard
compiler include directory, <install directory>/avr/avr/
include.

ISO Standard: “How the named source file is searched for in an included "" delimited
header (C90 6.8.2, C99 6.10.2).”

Implementation: The compiler first searches for the named file in the directory containing
the including file, then the directories which are searched for a < >
delimited header.

ISO Standard: “The method by which preprocessing tokens are combined into a header
name (C90 6.8.2, C99 6.10.2).”

Implementation: All tokens, including whitespace, are considered part of the header file
name. Macro expansion is not performed on tokens inside the delimiters.

ISO Standard: “The nesting limit for #include processing (C90 6.8.2, C99 6.10.2).”
Implementation: No limit.
ISO Standard: "Whether the # operator inserts a \ character before the \ character that

begins a universal character name in a character constant or string literal
(6.10.3.2)."

Implementation: No.
ISO Standard: “The behavior on each recognized non-STDC #pragma directive (C90

6.8.6, C99 6.10.6).”
Implementation: See Section 3.14.3 “Pragma Directives”
ISO Standard: “The definitions for __DATE__ and __TIME__ when respectively, the

date and time of translation are not available (C90 6.8.8, C99 6.10.8).”
Implementation: The date and time of translation are always available.
 2012-2018 Microchip Technology Inc. DS50002750A-page 151

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
B.14 LIBRARY FUNCTIONS
ISO Standard: “Any library facilities available to a freestanding program, other than the

minimal set required by clause 4 (5.1.2.1).”
Implementation: See Appendix A. Library Functions.
ISO Standard: “The format of the diagnostic printed by the assert macro (7.2.1.1).”
Implementation: Assertion failed: (message), function function, file

file, line line.\n”. The function function component is
skipped if __func__ is unavailable.

ISO Standard: “The representation of floating-point exception flags stored by the fege-
texceptflag function (7.6.2.2).”

IImplementation: Unimplemented.
ISO Standard: “Whether the feraiseexcept function raises the inexact exception in

addition to the overflow or underflow exception (7.6.2.3).”
Implementation: Unimplemented.
ISO Standard: “Strings other than "C" and "" that may be passed as the second argu-

ment to the setlocale function (7.11.1.1).”
Implementation: None.
ISO Standard: “The types defined for float_t and double_t when the value of the

FLT_EVAL_METHOD macro is less than 0 or greater than 2 (7.12).”
Implementation: Unimplemented.
ISO Standard: “Domain errors for the mathematics functions, other than those required

by this International Standard (7.12.1).”
Implementation: None.
ISO Standard: “The values returned by the mathematics functions on domain errors

(7.12.1).”
Implementation: errno is set to EDOM on domain errors.
ISO Standard: “Whether the mathematics functions set errno to the value of the macro

ERANGE on overflow and/or underflow range errors (7.12.1).”
Implementation: Yes
ISO Standard: “Whether a domain error occurs or zero is returned when the fmod

function has a second argument of zero (7.12.10.1).”
Implementation: The first argument is returned.
ISO Standard: “The base-2 logarithm of the modulus used by the remquo function in

reducing the quotient (7.12.10.3).”
Implementation: Unimplemented.
ISO Standard: Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the

call of a signal handler, and, if not, the blocking of signals that is per-
formed (7.14.1.1).

Implementation: Signals are not implemented.
ISO Standard: The null pointer constant to which the macro NULL expands (7.17).
Implementation: ((void *)0)

ISO Standard: “Whether the last line of a text stream requires a terminating new-line
character (7.19.2).”

Implementation: Streams are not implemented.
ISO Standard: “Whether space characters that are written out to a text stream

immediately before a new-line character appear when read in (7.19.2).”
Implementation: Streams are not implemented.
ISO Standard: “The number of null characters that may be appended to data written to a

binary stream (7.19.2).”
Implementation: Streams are not implemented.
DS50002750A-page 152  2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
ISO Standard: “Whether the file position indicator of an append-mode stream is initially
positioned at the beginning or end of the file (7.19.3).”

Implementation: Streams are not implemented.
ISO Standard: “Whether a write on a text stream causes the associated file to be

truncated beyond that point (7.19.3).”
Implementation: Streams are not implemented.
ISO Standard: “The characteristics of file buffering (7.19.3).”
Implementation: File handling is not implemented.
ISO Standard: “Whether a zero-length file actually exists (7.19.3).”
Implementation: File handling is not implemented.
ISO Standard: “The rules for composing valid file names (7.19.3).”
Implementation: File handling is not implemented.
ISO Standard: “Whether the same file can be open multiple times (7.19.3).”
Implementation: File handling is not implemented.
ISO Standard: “The nature and choice of encodings used for multibyte characters in files

(7.19.3).”
Implementation: File handling is not implemented.
ISO Standard: “The effect of the remove function on an open file (7.19.4.1).”
Implementation: File handling is not implemented.
ISO Standard: “The effect if a file with the new name exists prior to a call to the rename

function (7.19.4.2).”
Implementation: File handling is not implemented.
ISO Standard: “Whether an open temporary file is removed upon abnormal program

termination (7.19.4.3).”
Implementation: File handling is not implemented.
ISO Standard: “What happens when the tmpnam function is called more than TMP_MAX

times (7.19.4.4).”
Implementation: File handling is not implemented.
ISO Standard: “Which changes of mode are permitted (if any), and under what

circumstances (7.19.5.4).”
Implementation: File handling is not implemented.
ISO Standard: “The style used to print an infinity or NaN and the meaning of the

n-char-sequence, if that style is printed for a NaN (7.19.6.1, 7.24.2.1).”
Implementation: The values are printed as the nearest number.
ISO Standard: “The output for %p conversion in the fprintf or fwprintf function

(7.19.6.1, 7.24.2.1).”
Implementation: Functionally equivalent to %lx.
ISO Standard: “The interpretation of a - character that is neither the first nor the last

character, nor the second where a ^ character is the first, in the scanlist
for %[conversion in the fscanf or fwscanf function (7.19.6.2,
7.24.2.2).”

Implementation: Streams are not implemented.
ISO Standard: “The set of sequences matched by the %p conversion in the fscanf or

fwscanf function (7.19.6.2, 7.24.2.2).”
Implementation: Streams are not implemented.
ISO Standard: “The value to which the macro errno is set by the fgetpos, fsetpos,

or ftell functions on failure (7.19.9.1, 7.19.9.3, 7.19.9.4).”
Implementation: Streams are not implemented.
ISO Standard: “The meaning of the n-char-sequence in a string converted by the str-

tod, strtof, strtold, wcstod, wcstof, or wcstold function
(7.20.1.3, 7.24.4.1.1).”
 2012-2018 Microchip Technology Inc. DS50002750A-page 153

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Implementation: No meaning is attached to the sequence.
ISO Standard: “Whether or not the strtod, strtof, strtold, wcstod, wcstof, or

wcstold function sets errno to ERANGE when underflow occurs
(7.20.1.3, 7.24.4.1.1).”

Implementation: No.
ISO Standard: “Whether the calloc, malloc, and realloc functions return a Null

Pointer or a pointer to an allocated object when the size requested is zero
(7.20.3).”

Implementation: The requested size is bumped to the lowest allowable, two bytes. If this
can be successfully allocated, a pointer to the space is returned; other-
wise NULL is returned.

ISO Standard: “Whether open output streams are flushed, open streams are closed, or
temporary files are removed when the abort function is called
(7.20.4.1).”

Implementation: Streams are not implemented.
ISO Standard: “The termination status returned to the host environment by the abort

function (7.20.4.1).”
Implementation: The host environment is application defined.
ISO Standard: “The value returned by the system function when its argument is not a

Null Pointer (7.20.4.5).”
Implementation: The host environment is application defined.
ISO Standard: “The local time zone and Daylight Saving Time (7.23.1).”
Implementation: Application defined.
ISO Standard: "The range and precision of times representable in clock_t and time_t

(7.23)"
Implementation: the time_t type is used to hold a number of seconds and is defined as a

long type; clock_t is not defined.
ISO Standard: “The era for the clock function (7.23.2.1).”
Implementation: Application defined.
ISO Standard: “The replacement string for the %Z specifier to the strftime, strfx-

time, wcsftime, and wcsfxtime functions in the “C” locale (7.23.3.5,
7.23.3.6, 7.24.5.1, 7.24.5.2).”

Implementation: These functions are unimplemented.
ISO Standard: “Whether or when the trigonometric, hyperbolic, base-e exponential,

base-e logarithmic, error, and log gamma functions raise the inexact
exception in an IEC 60559 conformant implementation (F.9).”

Implementation: No.
ISO Standard: “Whether the functions in <math.h> honor the Rounding Direction mode

(F.9).”
Implementation: The rounding mode is not forced.
DS50002750A-page 154  2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
B.15 ARCHITECTURE
ISO Standard: “The values or expressions assigned to the macros specified in the

headers <float.h>, <limits.h>, and <stdint.h> (C90 and C99
5.2.4.2, C99 7.18.2, 7.18.3).”

Implementation: See Table A-5, Table A-8 and the header files in <install direc-
tory>/avr/avr/include/c99.

ISO Standard: “The number, order, and encoding of bytes in any object, when not
explicitly specified in the standard (C99 6.2.6.1).”

Implementation: Little endian, populated from Least Significant Byte first.
ISO Standard: “The value of the result of the sizeof operator (C90 6.3.3.4, C99

6.5.3.4).”
Implementation: The type of the result is equivalent to unsigned int.
 2012-2018 Microchip Technology Inc. DS50002750A-page 155

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
NOTES:
DS50002750A-page 156  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
®
USER’S GUIDE FOR AVR

Glossary
A
Absolute Section
A GCC compiler section with a fixed (absolute) address that cannot be changed by the
linker.
Absolute Variable/Function
A variable or function placed at an absolute address using the OCG compiler’s @
address syntax.
Access Memory
PIC18 Only – Special registers on PIC18 devices that allow access regardless of the
setting of the Bank Select Register (BSR).
Access Entry Points
Access entry points provide a way to transfer control across segments to a function
which cannot be defined at link time. They support the separate linking of boot and
secure application segments.
Address
Value that identifies a location in memory.
Alphabetic Character
Alphabetic characters are those characters that are letters of the Arabic alphabet
(a, b, …, z, A, B, …, Z).
Alphanumeric
Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0,1, …, 9).
ANDed Breakpoints
Set up an ANDed condition for breaking, i.e., breakpoint 1 AND breakpoint 2 must
occur at the same time before a program halt. This can only be accomplished if a data
breakpoint and a program memory breakpoint occur at the same time.
Anonymous Structure
16-bit C Compiler – An unnamed structure.
PIC18 C Compiler – An unnamed structure that is a member of a C union. The mem-
bers of an anonymous structure can be accessed as if they were members of the
enclosing union. For example, in the following code, hi and lo are members of an
anonymous structure inside the union caster.
union castaway {
 int intval;
 struct {
 char lo; //accessible as caster.lo
 char hi; //accessible as caster.hi
 };
} caster;
 2012-2018 Microchip Technology Inc. DS50002750A-page 157

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
ANSI
American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.
Application
A set of software and hardware that can be controlled by a PIC microcontroller.
Archive/Archiver
An archive/library is a collection of relocatable object modules. It is created by assem-
bling multiple source files to object files, and then using the archiver/librarian to com-
bine the object files into one archive/library file. An archive/library can be linked with
object modules and other archives/libraries to create executable code.
ASCII
American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.
Assembly/Assembler
Assembly is a programming language that describes binary machine code in a sym-
bolic form. An assembler is a language tool that translates assembly language source
code into machine code.
Assigned Section
A GCC compiler section which has been assigned to a target memory block in the linker
command file.
Asynchronously
Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that can occur at any time during processor execution.
Asynchronous Stimulus
Data generated to simulate external inputs to a simulator device.
Attribute
GCC characteristics of variables or functions in a C program which are used to describe
machine-specific properties.
Attribute, Section
GCC characteristics of sections, such as “executable”, “readonly”, or “data” that can be
specified as flags in the assembler .section directive.

B
Binary
The base two numbering system that uses the digits 0-1. The rightmost digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.
Breakpoint
Hardware Breakpoint: An event whose execution will cause a halt.
Software Breakpoint: An address where execution of the firmware will halt. Usually
achieved by a special break instruction.
Build
Compile and link all the source files for an application.
DS50002750A-page 158  2012-2018 Microchip Technology Inc.

Glossary
C
C\C++
C is a general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators. C++ is the
object-oriented version of C.
Calibration Memory
A special function register or registers used to hold values for calibration of a PIC micro-
controller on-board RC oscillator or other device peripherals.
Central Processing Unit
The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the arithmetic logic unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address
bus, and accesses to the stack.
Clean
Clean removes all intermediary project files, such as object, hex and debug files, for
the active project. These files are recreated from other files when a project is built.
COFF
Common Object File Format. An object file of this format contains machine code,
debugging and other information.
Command Line Interface
A means of communication between a program and its user based solely on textual
input and output.
Compiled Stack
A region of memory managed by the compiler in which variables are statically allocated
space. It replaces a software or hardware stack when such mechanisms cannot be effi-
ciently implemented on the target device.
Compiler
A program that translates a source file written in a high-level language into machine
code.
Conditional Assembly
Assembly language code that is included or omitted based on the assembly-time value
of a specified expression.
Conditional Compilation
The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.
Configuration Bits
Special-purpose bits programmed to set PIC microcontroller modes of operation. A
Configuration bit can or cannot be preprogrammed.
Control Directives
Directives in assembly language code that cause code to be included or omitted based
on the assembly-time value of a specified expression.
CPU
See Central Processing Unit.
 2012-2018 Microchip Technology Inc. DS50002750A-page 159

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Cross Reference File
A file that references a table of symbols and a list of files that references the symbol. If
the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

D
Data Directives
Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.
Data Memory
On Microchip MCU and DSC devices, data memory (RAM) is comprised of General
Purpose Registers (GPRs) and Special Function Registers (SFRs). Some devices also
have EEPROM data memory.
Data Monitor and Control Interface (DMCI)
The Data Monitor and Control Interface, or DMCI, is a tool in MPLAB X IDE. The inter-
face provides dynamic input control of application variables in projects. Applica-
tion-generated data can be viewed graphically using any of 4 dynamically-assignable
graph windows.
Debug/Debugger
See ICE/ICD.
Debugging Information
Compiler and assembler options that, when selected, provide varying degrees of infor-
mation used to debug application code. See compiler or assembler documentation for
details on selecting debug options.
Deprecated Features
Features that are still supported for legacy reasons, but will eventually be phased out
and no longer used.
Device Programmer
A tool used to program electrically programmable semiconductor devices such as
microcontrollers.
Digital Signal Controller
A A digital signal controller (DSC) is a microcontroller device with digital signal process-
ing capability, i.e., Microchip dsPIC DSC devices.
Digital Signal Processing\Digital Signal Processor
Digital signal processing (DSP) is the computer manipulation of digital signals, com-
monly analog signals (sound or image) which have been converted to digital form
(sampled). A digital signal processor is a microprocessor that is designed for use in dig-
ital signal processing.
Directives
Statements in source code that provide control of the language tool’s operation.
Download
Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.
DWARF
Debug With Arbitrary Record Format. DWARF is a debug information format for ELF
files.
DS50002750A-page 160  2012-2018 Microchip Technology Inc.

Glossary
E
EEPROM
Electrically Erasable Programmable Read Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.
ELF
Executable and Linking Format. An object file of this format contains machine code.
Debugging and other information is specified in with DWARF. ELF/DWARF provide
better debugging of optimized code than COFF.
Emulation/Emulator
See ICE/ICD.
Endianness
The ordering of bytes in a multi-byte object.
Environment
MPLAB PM3 – A folder containing files on how to program a device. This folder can be
transferred to a SD/MMC card.
Epilogue
A portion of compiler-generated code that is responsible for deallocating stack space,
restoring registers and performing any other machine-specific requirement specified in
the runtime model. This code executes after any user code for a given function,
immediately prior to the function return.
EPROM
Erasable Programmable Read Only Memory. A programmable read-only memory that
can be erased usually by exposure to ultraviolet radiation.
Error/Error File
An error reports a problem that makes it impossible to continue processing your pro-
gram. When possible, an error identifies the source file name and line number where
the problem is apparent. An error file contains error messages and diagnostics gener-
ated by a language tool.
Event
A description of a bus cycle which can include address, data, pass count, external
input, cycle type (fetch, R/W), and time stamp. Events are used to describe triggers,
breakpoints and interrupts.
Executable Code
Software that is ready to be loaded for execution.
Export
Send data out of the MPLAB IDE in a standardized format.
Expressions
Combinations of constants and/or symbols separated by arithmetic or logical
operators.
Extended Microcontroller Mode
In extended microcontroller mode, on-chip program memory as well as external mem-
ory is available. Execution automatically switches to external if the program memory
address is greater than the internal memory space of the PIC18 device.
 2012-2018 Microchip Technology Inc. DS50002750A-page 161

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Extended Mode (PIC18 MCUs)
In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed
with literal offset addressing.
External Label
A label that has external linkage.
External Linkage
A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.
External Symbol
A symbol for an identifier which has external linkage. This can be a reference or a
definition.
External Symbol Resolution
A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.
External Input Line
An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.
External RAM
Off-chip Read/Write memory.

F
Fatal Error
An error that will halt compilation immediately. No further messages will be produced.
File Registers
On-chip data memory, including General Purpose Registers (GPRs) and Special
Function Registers (SFRs).
Filter
Determine by selection what data is included/excluded in a trace display or data file.
Fixup
The process of replacing object file symbolic references with absolute addresses after
relocation by the linker.
Flash
A type of EEPROM where data is written or erased in blocks instead of bytes.
FNOP
Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle instruc-
tion. Because the PIC microcontroller architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current instruction.
However, if the current instruction changes the program counter, this prefetched
instruction is explicitly ignored, causing a forced NOP cycle.
Frame Pointer
A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables. Provides a convenient base from
which to access local variables and other values for the current function.
DS50002750A-page 162  2012-2018 Microchip Technology Inc.

Glossary
Free-Standing
An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,
<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h> and
<stdint.h>.

G
GPR
General Purpose Register. The portion of device data memory (RAM) available for
general use.

H
Halt
A stop of program execution. Executing Halt is the same as stopping at a breakpoint.
Heap
An area of memory used for dynamic memory allocation where blocks of memory are
allocated and freed in an arbitrary order determined at runtime.
Hex Code\Hex File
Hex code is executable instructions stored in a hexadecimal format code. Hex code is
contained in a hex file.
Hexadecimal
The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f). The
digits A-F represent hexadecimal digits with values of (decimal) 10 to 15. The rightmost
digit counts ones, the next counts multiples of 16, then 162 = 256, etc.
High Level Language
A language for writing programs that is further removed from the processor than
assembly.

I
ICE/ICD
In-Circuit Emulator/In-Circuit Debugger: A hardware tool that debugs and programs a
target device. An emulator has more features than an debugger, such as trace.
In-Circuit Emulation/In-Circuit Debug: The act of emulating or debugging with an in-cir-
cuit emulator or debugger.
-ICE/-ICD: A device (MCU or DSC) with on-board in-circuit emulation or debug circuitry.
This device is always mounted on a header board and used to debug with an in-circuit
emulator or debugger.
ICSP
In-Circuit Serial Programming. A method of programming Microchip embedded
devices using serial communication and a minimum number of device pins.
IDE
Integrated Development Environment, as in MPLAB IDE.
Identifier
A function or variable name.
IEEE
Institute of Electrical and Electronics Engineers.
 2012-2018 Microchip Technology Inc. DS50002750A-page 163

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Import
Bring data into the MPLAB IDE from an outside source, such as from a hex file.
Initialized Data
Data which is defined with an initial value. In C,
int myVar=5;

defines a variable which will reside in an initialized data section.
Instruction Set
The collection of machine language instructions that a particular processor
understands.
Instructions
A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.
Internal Linkage
A function or variable has internal linkage if it cannot be accessed from outside the
module in which it is defined.
International Organization for Standardization
An organization that sets standards in many businesses and technologies, including
computing and communications. Also known as ISO.
Interrupt
A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event can be processed. Upon
completion of the ISR, normal execution of the application resumes.
Interrupt Handler
A routine that processes special code when an interrupt occurs.
Interrupt Service Request (IRQ)
An event which causes the processor to temporarily suspend normal instruction exe-
cution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.
Interrupt Service Routine (ISR)
Language tools – A function that handles an interrupt.
MPLAB IDE – User-generated code that is entered when an interrupt occurs. The loca-
tion of the code in program memory will usually depend on the type of interrupt that has
occurred.
Interrupt Vector
Address of an interrupt service routine or interrupt handler.

L
L-value
An expression that refers to an object that can be examined and/or modified. An l-value
expression is used on the left-hand side of an assignment.
Latency
The time between an event and its response.
Library/Librarian
See Archive/Archiver.
DS50002750A-page 164  2012-2018 Microchip Technology Inc.

Glossary
Linker
A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.
Linker Script Files
Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.
Listing Directives
Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.
Listing File
A listing file is an ASCII text file that shows the machine code generated for each C
source statement, assembly instruction, assembler directive, or macro encountered in
a source file.
Little Endian
A data ordering scheme for multibyte data whereby the LSB is stored at the lower
addresses.
Local Label
A local label is one that is defined inside a macro with the LOCAL directive. These
labels are particular to a given instance of a macro’s instantiation. In other words, the
symbols and labels that are declared as local are no longer accessible after the ENDM
macro is encountered.
Logic Probes
Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.
Loop-Back Test Board
Used to test the functionality of the MPLAB REAL ICE in-circuit emulator.
LVDS
Low Voltage Differential Signaling. A low noise, low-power, low amplitude method for
high-speed (gigabits per second) data transmission over copper wire.
With standard I/O signaling, data storage is contingent upon the actual voltage level.
Voltage level can be affected by wire length (longer wires increase resistance, which
lowers voltage). But with LVDS, data storage is distinguished only by positive and neg-
ative voltage values, not the voltage level. Therefore, data can travel over greater
lengths of wire while maintaining a clear and consistent data stream.
Source: http://www.webopedia.com/TERM/L/LVDS.html.

M
Machine Code
The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set.”
Machine Language
A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.
 2012-2018 Microchip Technology Inc. DS50002750A-page 165

http://www.webopedia.com/TERM/L/LVDS.html

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Macro
Macro instruction. An instruction that represents a sequence of instructions in abbrevi-
ated form.
Macro Directives
Directives that control the execution and data allocation within macro body definitions.
Makefile
Export to a file the instructions to Make the project. Use this file to Make your project
outside of MPLAB IDE, i.e., with a make.
Make Project
A command that rebuilds an application, recompiling only those source files that have
changed since the last complete compilation.
MCU
Microcontroller Unit. An abbreviation for microcontroller. Also uC.
Memory Model
For C compilers, a representation of the memory available to the application. For the
PIC18 C compiler, a description that specifies the size of pointers that point to program
memory.
Message
Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.
Microcontroller
A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and
timers.
Microcontroller Mode
One of the possible program memory configurations of PIC18 microcontrollers. In
microcontroller mode, only internal execution is allowed. Thus, only the on-chip pro-
gram memory is available in microcontroller mode.
Microprocessor Mode
One of the possible program memory configurations of PIC18 microcontrollers. In
microprocessor mode, the on-chip program memory is not used. The entire program
memory is mapped externally.
Mnemonics
Text instructions that can be translated directly into machine code. Also referred to as
opcodes.
Module
The preprocessed output of a source file after preprocessor directives have been exe-
cuted. Also known as a translation unit.
MPASM™ Assembler
Microchip Technology’s relocatable macro assembler for PIC microcontroller devices,
KeeLoq® devices and Microchip memory devices.
MPLAB Language Tool for Device
Microchip’s C compilers, assemblers and linkers for specified devices. Select the type
of language tool based on the device you will be using for your application, e.g., if you
will be creating C code on a PIC18 MCU, select the MPLAB C Compiler for PIC18
MCUs.
DS50002750A-page 166  2012-2018 Microchip Technology Inc.

Glossary
MPLAB ICD
Microchip’s in-circuit debuggers that works with MPLAB IDE. See ICE/ICD.
MPLAB IDE
Microchip’s Integrated Development Environment. MPLAB IDE comes with an editor,
project manager and simulator.
MPLAB PM3
A device programmer from Microchip. Programs PIC18 microcontrollers and dsPIC
digital signal controllers. Can be used with MPLAB IDE or stand-alone. Replaces
PRO MATE II.
MPLAB REAL ICE™ In-Circuit Emulator
Microchip’s next-generation in-circuit emulators that works with MPLAB IDE. See
ICE/ICD.
MPLAB SIM
Microchip’s simulator that works with MPLAB IDE in support of PIC MCU and dsPIC
DSC devices.
MPLIB™ Object Librarian
Microchip’s librarian that can work with MPLAB IDE. MPLIB librarian is an object librar-
ian for use with COFF object modules created using either MPASM assembler (mpasm
or mpasmwin v2.0) or MPLAB C18 C compiler.
MPLINK™ Object Linker
MPLINK linker is an object linker for the Microchip MPASM assembler and the Micro-
chip C18 C compiler. MPLINK linker also can be used with the Microchip MPLIB librar-
ian. MPLINK linker is designed to be used with MPLAB IDE, though not required.
MRU
Most Recently Used. Refers to files and windows available to be selected from MPLAB
IDE main pull down menus.

N
Native Data Size
For Native trace, the size of the variable used in a Watch window must be of the same
size as the selected device’s data memory: bytes for PIC18 devices and words for
16-bit devices.
Nesting Depth
The maximum level to which macros can include other macros.
Node
MPLAB IDE project component.
Non-Extended Mode (PIC18 MCUs)
In Non-Extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.
Non Real Time
Refers to the processor at a breakpoint or executing single-step instructions or MPLAB
IDE being run in simulator mode.
Non-Volatile Storage
A storage device whose contents are preserved when its power is off.
 2012-2018 Microchip Technology Inc. DS50002750A-page 167

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
NOP
No Operation. An instruction that has no effect when executed except to advance the
program counter.

O
Object Code/Object File
Object code is the machine code generated by an assembler or compiler. An object file
is a file containing machine code and, possibly, debug information. It can be immedi-
ately executable or it can be relocatable, requiring linking with other object files, e.g.,
libraries, to produce a complete executable program.
Object File Directives
Directives that are used only when creating an object file.
Octal
The base 8 number system that only uses the digits 0-7. The rightmost digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.
Off-Chip Memory
Off-chip memory refers to the memory selection option for the PIC18 device where
memory can reside on the target board, or where all program memory can be supplied
by the emulator. The Memory tab accessed from Options>Development Mode pro-
vides the Off-Chip Memory selection dialog box.
Opcodes
Operational Codes. See Mnemonics.
Operators
Symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.
OTP
One Time Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are eras-
able.

P
Pass Counter
A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, as well as any
sequential event in the complex trigger dialog.
PC
Personal Computer or Program Counter.
PC Host
Any PC running a supported Windows operating system.
Persistent Data
Data that is never cleared or initialized. Its intended use is so that an application can
preserve data across a device Reset.
Phantom Byte
An unimplemented byte in the dsPIC architecture that is used when treating the 24-bit
instruction word as if it were a 32-bit instruction word. Phantom bytes appear in dsPIC
hex files.
DS50002750A-page 168  2012-2018 Microchip Technology Inc.

Glossary
PIC MCUs
PIC microcontrollers (MCUs) refers to all Microchip microcontroller families.
PICkit 2 and 3
Microchip’s developmental device programmers with debug capability through Debug
Express. See the Readme files for each tool to see which devices are supported.
Plug-ins
The MPLAB IDE has both built-in components and plug-in modules to configure the
system for a variety of software and hardware tools. Several plug-in tools can be found
under the Tools menu.
Pod
The enclosure for an in-circuit emulator or debugger. Other names are “Puck”, if the
enclosure is round, and “Probe”, not be confused with logic probes.
Power-on-Reset Emulation
A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.
Pragma
A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler. MPLAB C30 uses attributes to
convey this information.
Precedence
Rules that define the order of evaluation in expressions.
Production Programmer
A production programmer is a programming tool that has resources designed in to pro-
gram devices rapidly. It has the capability to program at various voltage levels and com-
pletely adheres to the programming specification. Programming a device as fast as
possible is of prime importance in a production environment where time is of the
essence as the application circuit moves through the assembly line.
Profile
For MPLAB SIM simulator, a summary listing of executed stimulus by register.
Program Counter
The location that contains the address of the instruction that is currently executing.
Program Counter Unit
16-bit assembler – A conceptual representation of the layout of program memory. The
program counter increments by 2 for each instruction word. In an executable section,
2 program counter units are equivalent to 3 bytes. In a read-only section, 2 program
counter units are equivalent to 2 bytes.
Program Memory
MPLAB IDE – The memory area in a device where instructions are stored. Also, the
memory in the emulator or simulator containing the downloaded target application firm-
ware.
16-bit assembler/compiler – The memory area in a device where instructions are
stored.
Project
A project contains the files needed to build an application (source code, linker script
files, etc.) along with their associations to various build tools and build options.
 2012-2018 Microchip Technology Inc. DS50002750A-page 169

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Prologue
A portion of compiler-generated code that is responsible for allocating stack space, pre-
serving registers and performing any other machine-specific requirement specified in
the runtime model. This code executes before any user code for a given function.
Prototype System
A term referring to a user’s target application, or target board.
Psect
The OCG equivalent of a GCC section, short for program section. A block of code or
data which is treated as a whole by the linker.
PWM Signals
Pulse Width Modulation Signals. Certain PIC MCU devices have a PWM peripheral.

Q
Qualifier
An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

R
Radix
The number base, hex, or decimal, used in specifying an address.
RAM
Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.
Raw Data
The binary representation of code or data associated with a section.
Read Only Memory
Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.
Real Time
When an in-circuit emulator or debugger is released from the halt state, the processor
runs in Real Time mode and behaves exactly as the normal chip would behave. In Real
Time mode, the real time trace buffer of an emulator is enabled and constantly captures
all selected cycles, and all break logic is enabled. In an in-circuit emulator or debugger,
the processor executes in real time until a valid breakpoint causes a halt, or until the
user halts the execution.
In the simulator, real time simply means execution of the microcontroller instructions as
fast as they can be simulated by the host CPU.
Recursive Calls
A function that calls itself, either directly or indirectly.
Recursion
The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.
Reentrant
A function that can have multiple, simultaneously active instances. This can happen
due to either direct or indirect recursion or through execution during interrupt
processing.
DS50002750A-page 170  2012-2018 Microchip Technology Inc.

Glossary
Relaxation
The process of converting an instruction to an identical, but smaller instruction. This is
useful for saving on code size. MPLAB ASM30 currently knows how to RELAX a CALL
instruction into an RCALL instruction. This is done when the symbol that is being called
is within +/- 32k instruction words from the current instruction.
Relocatable
An object whose address has not been assigned to a fixed location in memory.
Relocatable Section
16-bit assembler – A section whose address is not fixed (absolute). The linker assigns
addresses to relocatable sections through a process called relocation.
Relocation
A process performed by the linker in which absolute addresses are assigned to relo-
catable sections and all symbols in the relocatable sections are updated to their new
addresses.
ROM
Read Only Memory (Program Memory). Memory that cannot be modified.
Run
The command that releases the emulator from halt, allowing it to run the application
code and change or respond to I/O in real time.
Run-time Model
Describes the use of target architecture resources.
Runtime Watch
A Watch window where the variables change in as the application is run. See individual
tool documentation to determine how to set up a runtime watch. Not all tools support
runtime watches.

S
Scenario
For MPLAB SIM simulator, a particular setup for stimulus control.
Section
The GCC equivalent of an OCG psect. A block of code or data which is treated as a
whole by the linker.
Section Attribute
A GCC characteristic ascribed to a section (e.g., an access section).
Sequenced Breakpoints
Breakpoints that occur in a sequence. Sequence execution of breakpoints is
bottom-up; the last breakpoint in the sequence occurs first.
Serialized Quick Turn Programming
Serialization allows you to program a serial number into each microcontroller device
that the Device Programmer programs. This number can be used as an entry code,
password or ID number.
Shell
The MPASM assembler shell is a prompted input interface to the macro assembler.
There are two MPASM assembler shells: one for the DOS version and one for the
Windows version.
 2012-2018 Microchip Technology Inc. DS50002750A-page 171

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Simulator
A software program that models the operation of devices.
Single Step
This command steps though code, one instruction at a time. After each instruction,
MPLAB IDE updates register windows, watch variables, and status displays so you can
analyze and debug instruction execution. You can also single step C compiler source
code, but instead of executing single instructions, MPLAB IDE will execute all assembly
level instructions generated by the line of the high level C statement.
Skew
The information associated with the execution of an instruction appears on the proces-
sor bus at different times. For example, the executed opcodes appears on the bus as
a fetch during the execution of the previous instruction, the source data address and
value and the destination data address appear when the opcodes is actually executed,
and the destination data value appears when the next instruction is executed. The trace
buffer captures the information that is on the bus at one instance. Therefore, one trace
buffer entry will contain execution information for three instructions. The number of cap-
tured cycles from one piece of information to another for a single instruction execution
is referred to as the skew.
Skid
When a hardware breakpoint is used to halt the processor, one or more additional
instructions can be executed before the processor halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.
Source Code
The form in which a computer program is written by the programmer. Source code is
written in a formal programming language which can be translated into machine code
or executed by an interpreter.
Source File
An ASCII text file containing source code.
Special Function Registers (SFRs)
The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.
SQTP
See Serialized Quick Turn Programming.
Stack, Hardware
Locations in PIC microcontroller where the return address is stored when a function call
is made.
Stack, Software
Memory used by an application for storing return addresses, function parameters, and
local variables. This memory is dynamically allocated at runtime by instructions in the
program. It allows for reentrant function calls.
Stack, Compiled
A region of memory managed and allocated by the compiler in which variables are stat-
ically assigned space. It replaces a software stack when such mechanisms cannot be
efficiently implemented on the target device. It precludes reentrancy.
MPLAB Starter Kit for Device
Microchip’s starter kits contains everything needed to begin exploring the specified
device. View a working application and then debug and program you own changes.
DS50002750A-page 172  2012-2018 Microchip Technology Inc.

Glossary
Static RAM or SRAM
Static Random Access Memory. Program memory you can read/write on the target
board that does not need refreshing frequently.
Status Bar
The Status Bar is located on the bottom of the MPLAB IDE window and indicates such
current information as cursor position, development mode and device, and active tool
bar.
Step Into
This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.
Step Over
Step Over allows you to debug code without stepping into subroutines. When stepping
over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.
If for some reason the subroutine gets into an endless loop or does not return properly,
the next breakpoint will never be reached. The Step Over command is the same as
Single Step except for its handling of CALL instructions.
Step Out
Step Out allows you to step out of a subroutine which you are currently stepping
through. This command executes the rest of the code in the subroutine and then stops
execution at the return address to the subroutine.
Stimulus
Input to the simulator, i.e., data generated to exercise the response of simulation to
external signals. Often the data is put into the form of a list of actions in a text file.
Stimulus can be asynchronous, synchronous (pin), clocked and register.
Stopwatch
A counter for measuring execution cycles.
Storage Class
Determines the lifetime of the memory associated with the identified object.
Storage Qualifier
Indicates special properties of the objects being declared (e.g., const).
Symbol
A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB IDE refer
mainly to variable names, function names and assembly labels. The value of a symbol
after linking is its value in memory.
Symbol, Absolute
Represents an immediate value such as a definition through the assembly .equ
directive.
System Window Control
The system window control is located in the upper left corner of windows and some dia-
logs. Clicking on this control usually pops up a menu that has the items “Minimize,”
“Maximize,” and “Close.”

T
Target
Refers to user hardware.
 2012-2018 Microchip Technology Inc. DS50002750A-page 173

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
Target Application
Software residing on the target board.
Target Board
The circuitry and programmable device that makes up the target application.
Target Processor
The microcontroller device on the target application board.
Template
Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.
Tool Bar
A row or column of icons that you can click on to execute MPLAB IDE functions.
Trace
An emulator or simulator function that logs program execution. The emulator logs pro-
gram execution into its trace buffer which is uploaded to MPLAB IDE’s trace window.
Trace Memory
Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.
Trace Macro
A macro that will provide trace information from emulator data. Since this is a software
trace, the macro must be added to code, the code must be recompiled or reassembled,
and the target device must be programmed with this code before trace will work.
Trigger Output
Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.
Trigraphs
Three-character sequences, all starting with ?? (two consecutive question marks), that
are defined by ISO C as replacements for single characters.

U
Unassigned Section
A section which has not been assigned to a specific target memory block in the linker
command file. The linker must find a target memory block in which to allocate an
unassigned section.
Uninitialized Data
Data which is defined without an initial value. In C,
int myVar;
defines a variable which will reside in an uninitialized data section.
Upload
The Upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.
USB
Universal Serial Bus. An external peripheral interface standard for communication
between a computer and external peripherals over a cable using bi-serial transmission.
USB 1.0/1.1 supports data transfer rates of 12 Mbps. Also referred to as high-speed
USB, USB 2.0 supports data rates up to 480 Mbps.
DS50002750A-page 174  2012-2018 Microchip Technology Inc.

Glossary
V
Vector
The memory locations that an application will jump to when either a Reset or interrupt
occurs.
Volatile
A variable qualifier which prevents the compiler applying optimizations that affect how
the variable is accessed in memory.

W
Warning
MPLAB IDE – An alert that is provided to warn you of a situation that would cause phys-
ical damage to a device, software file, or equipment.
16-bit assembler/compiler – Warnings report conditions that can indicate a problem,
but do not halt processing. In MPLAB C30, warning messages report the source file
name and line number, but include the text ‘warning:’ to distinguish them from error
messages.
Watch Variable
A variable that you can monitor during a debugging session in a Watch window.
Watch Window
Watch windows contain a list of watch variables that are updated at each breakpoint.
Watchdog Timer (WDT)
A timer on a PIC microcontroller that resets the processor after a selectable length of
time. The WDT is enabled or disabled and set up using Configuration bits.
Workbook
For MPLAB SIM stimulator, a setup for generation of SCL stimulus.
 2012-2018 Microchip Technology Inc. DS50002750A-page 175

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
NOTES:
DS50002750A-page 176  2012-2018 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
USER’S GUIDE FOR AVR® MCU
Index
Symbols
__attribute__ keyword.. 65
__flash qualifier .. 65
__flashn qualifier .. 65
__memxqualifier... 65
__NO_INTERRUPTS__ macro................................ 23
__persistent attribute ... 67
__persistent qualifier ...67, 87
__section attribute.. 67
__section qualifier .. 67
_HTC_EDITION_ macro .. 102
.as files, see assembly files
.asm files, see assembly files
.elf files, see ELF files
.h files, see header files
.hxl files, see hexmate log files
@ address construct, see absolute variables/functions
@ command file specifier... 14
preprocessor operator... 99
preprocessor operator... 99

Numerics
0b binary radix specifier ... 62

A
absdata attribute .. 65
absolute functions .. 80
absolute variables .. 71
address attribute .. 66
aligned attribute ... 66
anonymous structures and unions 59
ANSI C standard

divergence .. 52
ASCII characters

extended ... 64
asm C statement .. 91
asm keyword.. 28
assembly code

called by C .. 90
generating from C ... 25
interaction with C .. 97
mixing with C .. 90
preprocessing ..26, 99

assembly files .. 90
assembly language

registers .. 98
assembly list files ... 19
attribute

__persistent .. 67
__section .. 67
absdata ... 65
address ... 66

aligned .. 66
depreciated ... 66
io ... 66
io_low.. 66
packed .. 66
progmem... 67
unused .. 34, 67
weak.. 68

attributes .. 65
auto variables

initialization ... 34, 87
AVR architectures .. 12, 23

B
biased exponent... 56
big endian format ... 112
binary constants

C code... 62
bit-fields.. 28
bitwise complement operator 75
bootloaders .. 115
bss psect .. 69, 104
building projects ... 17
built-in functions ... 28

C
C identifiers .. 55
C standard

conformance ... 51
selecting.. 29

C standard libraries89, 125–143
call instructions... 24
call-saved registers .. 77
call-used registers .. 77
casting.. 37, 75
char type .. 28
character constants

in C.. 64
checksums ... 112
clearing variables ... 88
command files .. 14
command-line driver, see driver
commands, see building projects, command-line
comments... 31
Common C Interface .. 29, 51
compilation

incremental builds ... 17
make files, see make files
sequence .. 16–17
to assembly file ... 25
to object file... 25
to preprocessed file... 25
 2012-2018 Microchip Technology Inc. DS50002750A-page 177

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
compiled stack ... 70
compiler applications.. 16
compiler operating mode.. 11
compiler options, see driver options
config pragma .. 53
configuration bits .. 53
const objects

storage location... 70
const qualifier ... 64
constants

C specifiers ... 62
character ... 64
string, see string literals 64

context switch code.. 80, 84
conversion between types.. 75
cstack psect ... 104
Customer Notification Service.................................... 8
Customer Support .. 8

D
data memory .. 68
data psect... 69, 104
data stack... 70
data types

char ... 28
floating point.. 56–57
size of.. 55, 57

deprecated attribute ... 66
device support .. 52
diagnostic files.. 19
disabling interrupts ... 84
division by zero .. 31
Documentation

Conventions .. 6
Layout ... 5

driver
command format ... 14
help on options.. 26
input files... 14
long command lines .. 14
single step compilation...................................... 17

driver option
.. 26
accumulate-args ... 22
address ... 31
aggregrate-return .. 36
ansi ... 27
aux-info ... 27
bad-function-cast .. 37
C ... 43
c .. 25
call-prologues.. 22
cast-qual ... 37
char-subscripts.. 31
comment ... 31
conversion... 37
cpu .. 23
D ... 43
dD ... 43
div-by-zero .. 31
dM ... 44

dN.. 44
E.. 25
error... 37
ext ... 28
extra .. 36
format .. 32
g .. 40
H.. 44
help ... 26
I ... 49
idirafter .. 48
imacro ... 49
implicit ... 32
implicit-function-declaration............................... 32
implicit-int .. 32
include... 44
inline.. 37
iquote .. 44
L .. 49
l ... 47
larger-then... 37
long-long ... 37
lto .. 42
M ... 44
main .. 32
MD... 44
MF ... 44
MG .. 45
missing-braces .. 32
missing-declarations ... 37
missing-format-attributes................................... 37
missing-noreturn ... 38
missing-prototypes .. 38
MM .. 45
MMD.. 45
MP... 45
MQ .. 45
MT ... 45
nested-externs .. 38
no-asm .. 28
no-builtin.. 28
nodefaultlibs .. 47
NODEL.. 17
no-deprecated-declarations 38
no-interrupts .. 23
no-jump-tables .. 23
no-multichar .. 32
no-show-column.. 44
nostartfiles... 47
nostdinc... 45, 49
nostdlib.. 47
o .. 25
O0 ... 41
O1 ... 41
O2 ... 41
O3 ... 42
Og ... 42
Os.. 42
P.. 45
parentheses .. 32
DS50002750A-page 178  2012-2018 Microchip Technology Inc.

Index
pedantic .. 31
pedantic-errors.. 31
pointer-arith... 38
PRE .. 99
q.. 40
redundant-decls .. 38
relax .. 24
return-type .. 33
S ... 25
s .. 48
save-temps ... 40
sequence-point ... 33
shadow ... 38
shoft-enums .. 50
short-calls ... 24
signed-bitfield.. 28
signed-char ... 28
signed-compare .. 38
std ... 29
strict-prototypes .. 38
strict-X... 24
switch.. 33
syntax-only.. 31
system-headers .. 34
tiny-stack... 24
traditional .. 39
trigraphs...34, 46
U ... 46
u.. 48
undef ..39, 46
uninitialized ... 34
unknown-pragma .. 34
unreachable-code ... 39
unsigned-bitfield.. 28
unsigned-char ... 28
unused .. 34
unused-function .. 35
unused-label ... 35
unused-parameter .. 35
unused-value .. 35
unused-variables .. 35
v .. 26
w ... 31
Wa, ... 46
wall.. 31
whole-program.. 42
Wl,... 48
write-strings .. 39
x .. 26
Xassembler, .. 46
Xl,.. 48

driver options ... 14
DWARF files, see ELF files

E
EEPROM memory

reading.. 72
writing ... 72

ELF files
enabling interrupts ... 84
endianism..55, 56

exponent .. 56
extended character set... 64
external functions ... 80

F
F constant suffix ... 63
fatal error messages .. 20
file extensions .. 15
file types

command .. 14
input .. 14
object, see object files
preprocessed .. 25

Fletcher’s checksum algorithm............................... 112
floating-point constant suffixes................................. 63
floating-point types ... 56–57

biased exponent.. 56
exponent ... 56
rounding .. 56

frame pointer .. 52
function

entry and exit .. 22
parameters...70, 81, 90
pointers ... 60
size limits .. 80
specifiers... 78

function prototypes
generating ... 27

functions
absolute .. 80
external ... 80
inline.. 78
interrupt, see interrupt functions
static.. 78
written in assembler .. 90

H
header files... 89

device.. 52
help! ... 26
hex files .. 15, 109

data record.. 111
embedding serial numbers.............................. 116
embedding strings... 117
extended address record 115
format.. 115
merging ... 109
record length ... 115
statistics .. 115

hexmate application ... 109
hexmate log files .. 110, 115
hexmate options... 110–117

I
identifiers

C ... 55
IEEE floating-point format, see floating-point types . 56
incremental builds .. 17
INHX32 hex files .. 110, 115
INHX8M hex files ... 110, 115
initialized variables ... 87
 2012-2018 Microchip Technology Inc. DS50002750A-page 179

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
inline functions ... 37, 78
inline keyword .. 28
input files .. 14
instruction set ... 52
int types.. 55
integer constants.. 62
integer suffixes ... 63
integral promotion .. 75
Intel HEX files, see hex files
intermediate files .. 14, 16
Internet Address... 7
interrupt functions

context switching... 84
moving .. 80

interrupts
context switching... 80
disabling.. 84
enabling .. 84

io attribute .. 66
iol_low attribute .. 66

L
L constant suffix ... 63
LIBR application, see librarian
librarian ...89, 105, 108
libraries... 18

adding files to .. 108
deleting modules from..................................... 108
replacing modules in ... 89
search order .. 14
user-defined .. 89

library functions ...125–??
limits.h header file .. 55
linker scripts ... 104
linking projects ... 104
little endian format55, 56, 112
long int types .. 55
long long types ... 37

M
Macro ... 43
macro concatenation.. 99
main function.. 86
main-line code.. 82
make files ... 14, 17
mantissa... 56
map files ... 19
memory allocation .. 68

data memory ... 68
function code... 80
non-auto variables .. 69
program memory... 70

memory models.. 74
merging hex files .. 110
messages

error, see error messages
fatal error... 20
types of ... 20

Microchip Internet Web Site 7
modules

generating ... 25

N
non-volatile RAM .. 64
nv psect .. 104

O
object files .. 25
optimizations .. 99
options, see driver options
output files .. 25

P
packed attribute.. 66
PATH environment variable 15
p-code files ... 14
persistent qualifier .. 88
pointer

definitions .. 59
qualifiers.. 59
types.. 59

pointers... 59–62, 68
function.. 60

powerup routine.. 18, 88
preprocessed files .. 25
preprocessing... 99

assembler files .. 26
preprocessor

macro concatenation... 99
types.. 100

preprocessor directives 99–101
in assembly files.. 26

preprocessor macros
containing strings .. 43
predefined ... 102

progmem attribute .. 67
PROGMEM macro ... 67
program memory

absolute variables ... 71
project name... 18
projects... 17
psect

bss... 69, 104
cstack .. 104
data ... 69, 104
textn .. 104

Q
qualifier

__flash... 65
__flashn... 65
__memx .. 65
__persistent... 67, 87
__section... 67
auto ... 70
const.. 64
persistent... 88
volatile ... 64

qualifiers
and structures ... 57

R
radix specifiers
DS50002750A-page 180  2012-2018 Microchip Technology Inc.

Index
C code .. 62
Reading, Recommended ... 7
Readme ... 7
read-only variables... 64
registers ... 22

call-saved.. 77
call-used ... 77

reset ... 67
code executed after .. 18

rotate operator ... 76
runtime startup code .. 86

preserving variables.. 67
variable initialization.. 87

S
sequence points... 33
serial numbers ... 116

embedding .. 116
SFRs .. 54

accessing in assembly...................................... 98
short int types... 55
sign bit.. 56
single step compilation... 17
size of types ..55, 57
software stack .. 70
special function registers, see SFRs
stack

compiled ... 70
data... 70
software .. 70

stack pointer... 23
width ... 24

standard library files
static functions ... 78
static variables ... 87
storage duration ... 68
string literals... 64

packing ... 117
storage location .. 117

struct types, see structures
structure bit-fields... 58
structure qualifiers.. 57
structures ... 57

anonymous ... 59
bit-fields in... 58

switch statement .. 33
system header files .. 34

T
temporary variables ... 70
textn psect.. 104
translation units .. 25
Trigraphs.. 43
trigraphs ... 34
type conversions .. 75
typeof keyword... 28
types, see data types

U
U constant suffix .. 63
uninitialized variables... 88

unions
anonymous ... 59
qualifiers.. 57

unnamed bit-fields.. 58
unnamed structure members 58
unused attribute ... 34, 67
unused variables .. 34

removing ... 64
USB.. 174

V
variables

absolute .. 71
initialization ... 87
sizes.. 55, 57
storage duration .. 68

verbose output ... 26
volatile qualifier .. 64

W
warning messages ... 20

disabling.. 31
Warranty Registration .. 7
Watchdog Timer... 175
weak attribute... 68
WWW Address... 7

X
X register.. 24
xc.h header file... 52
XC8 application .. 14

Y
Y pointer... 52
 2012-2018 Microchip Technology Inc. DS50002750A-page 181

MPLAB® XC8 C Compiler User’s Guide for AVR® MCU
DS50002750A-page 182  2012-2018 Microchip Technology Inc.

DS50002750A-page 183  2012-2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
France - Saint Cloud
Tel: 33-1-30-60-70-00
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

11/07/16

http://support.microchip.com
http://www.microchip.com

	Preface
	Introduction
	Document Layout
	Conventions Used in this Guide
	Recommended Reading
	The Microchip Web Site
	Development Systems Customer Change Notification Service
	Customer Support
	Document Revision History
	Revision A (April 2018)

	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Compiler Description and Documentation
	1.2.1 Conventions

	1.3 Device Description
	Table 1-1: Summary of Supported Device Families

	Chapter 2. XC8 Command-line Driver
	2.1 Introduction
	2.2 Invoking the Compiler
	2.2.1 Driver Command-line Format
	2.2.1.1 Long Command Lines

	2.2.2 Driver Environment Variables
	2.2.3 Input File Types
	Table 2-1: xc8-cc Input File Types

	2.3 The Compilation Sequence
	2.3.1 The Compiler Applications
	Figure 2-1: Compiler Applications and Files

	2.3.2 Single-Step Compilation
	2.3.3 Multi-Step Compilation
	2.3.4 Compilation of Assembly Source

	2.4 Runtime Files
	2.4.1 Library Files
	2.4.2 Startup and Initialization

	2.5 Compiler Output
	2.5.1 Output Files
	Table 2-2: Common output files

	2.5.2 Diagnostic Files
	Table 2-3: Diagnostic files

	2.6 Compiler Messages
	2.6.1 Message Type
	2.6.2 Changing Message Behavior
	2.6.2.1 Disabling Messages
	2.6.2.2 Changing Message Types

	2.7 Option Descriptions
	2.7.1 Options Specific to AVR Devices
	Table 2-4: AVR Device-Specific Options
	2.7.1.1 accumulate-args
	2.7.1.2 call-prologues
	2.7.1.3 cpu
	Table 2-5: Selectable Architecture Families

	2.7.1.4 no-interrupts
	2.7.1.5 no-jump-tables
	2.7.1.6 relax
	2.7.1.7 short-calls
	2.7.1.8 strict-X
	2.7.1.9 tiny-stack

	2.7.2 Options for Controlling the Kind of Output
	Table 2-6: Kind-of-Output Control Options
	2.7.2.1 c: Compile to Intermediate File
	2.7.2.2 E: Preprocess Only
	2.7.2.3 o: Specify Output File
	2.7.2.4 S: Compile to Assembly
	2.7.2.5 v: Verbose Compilation
	2.7.2.6 x: Specify Source Language
	Table 2-7: Source file Language

	2.7.2.7 ###
	2.7.2.8 Help
	2.7.2.9 version

	2.7.3 Options for Controlling the C Dialect
	Table 2-8: C Dialect Control Options
	2.7.3.1 ANSI
	2.7.3.2 Aux-info
	2.7.3.3 no-asm
	2.7.3.4 no-builtin
	2.7.3.5 signed-char/Unsigned-char
	2.7.3.6 signed-bitfields/Unsigned-bitfields
	2.7.3.7 ext
	Table 2-9: Acceptable C Language Extensions

	2.7.3.8 std
	Table 2-10: Acceptable C Language Standards

	2.7.4 Options for Controlling Warnings and Errors
	Table 2-11: Warning and Error Options Implied By All Warnings
	2.7.4.1 Syntax only
	2.7.4.2 Pedantic
	2.7.4.3 Pedantic-Errors
	2.7.4.4 w: Disable All Warnings
	2.7.4.5 all
	2.7.4.6 Address
	2.7.4.7 Char-Subscripts
	2.7.4.8 Comment
	2.7.4.9 Div-by-Zero
	2.7.4.10 Format
	2.7.4.11 Implicit
	2.7.4.12 Implicit-Function-declaration
	2.7.4.13 Implicit-int
	2.7.4.14 main
	2.7.4.15 Missing-Braces
	2.7.4.16 No-Multichar
	2.7.4.17 Parentheses
	2.7.4.18 Return-Type
	2.7.4.19 Sequence-Point
	2.7.4.20 Switch
	2.7.4.21 System-Headers
	2.7.4.22 Trigraphs
	2.7.4.23 Uninitialized
	2.7.4.24 Unknown-Pragmas
	2.7.4.25 Unused
	2.7.4.26 Unused-Function
	2.7.4.27 Unused-Label
	2.7.4.28 Unused-Parameter
	2.7.4.29 Unused-Variable
	2.7.4.30 Unused-Value
	Table 2-12: Warning Options Not Implied by All Warnings (Continued)

	2.7.4.31 Extra
	2.7.4.32 Aggregate-Return
	2.7.4.33 Bad-Function-Cast
	2.7.4.34 Cast-Qualifier
	2.7.4.35 Conversion
	2.7.4.36 Error
	2.7.4.37 Inline
	2.7.4.38 Larger-than
	2.7.4.39 long long
	2.7.4.40 Missing-Declarations
	2.7.4.41 Missing-Format-Attribute
	2.7.4.42 Missing-noreturn
	2.7.4.43 Missing-Prototype
	2.7.4.44 Nested-Externs
	2.7.4.45 no-Deprecated-declarations
	2.7.4.46 Pointer-arith
	2.7.4.47 Redundant-Decls
	2.7.4.48 Shadow
	2.7.4.49 Signed-Compare
	2.7.4.50 Strict-prototypes
	2.7.4.51 Traditional
	2.7.4.52 Undef
	2.7.4.53 Unreachable-Code
	2.7.4.54 Write-String

	2.7.5 Options for Debugging
	Table 2-13: Debugging Options
	2.7.5.1 G: Produce debugging information
	2.7.5.2 q: Print Function Information
	2.7.5.3 save-temps

	2.7.6 Options for Controlling Optimization
	Table 2-14: General Optimization Options
	2.7.6.1 O0: Level Optimizations
	2.7.6.2 O1: Level Optimizations
	2.7.6.3 O2: Level Optimizations
	2.7.6.4 O3: Level Optimizations
	2.7.6.5 Og: Better Debugging
	2.7.6.6 Os: Level Optimizations
	2.7.6.7 LTO
	2.7.6.8 Whole-program

	2.7.7 Options for Controlling the Preprocessor
	Table 2-15: Preprocessor Options
	2.7.7.1 C: Preserve Comments
	2.7.7.2 dD: Preserve macro Definitions
	2.7.7.3 D: Define a Macro
	2.7.7.4 dM: Output Macro Definition List
	2.7.7.5 dN: Preserve macro Names
	2.7.7.6 No-show-column
	2.7.7.7 H: Print Header Files
	2.7.7.8 Include
	2.7.7.9 IQuote
	2.7.7.10 M: Generate Make Rule
	2.7.7.11 MD: Write Dependency Information to File
	2.7.7.12 MF: Specify Dependency File
	2.7.7.13 MG: Ignore Missing Header Files
	2.7.7.14 MM: Generate Make Rule For Quoted Headers
	2.7.7.15 MMD: Generate Make Rule For User Headers
	2.7.7.16 MP: Add Phony Target For Dependency
	2.7.7.17 MQ: Change Rule Target With Quotes
	2.7.7.18 MT: Change Rule Target
	2.7.7.19 Nostdinc
	2.7.7.20 P: Don’t Generate #line Directives
	2.7.7.21 Trigraphs
	2.7.7.22 U: Undefine macros
	2.7.7.23 Undef

	2.7.8 Options for Assembling
	Table 2-16: Assembly Options
	2.7.8.1 Wa: Pass Option to the Assembler
	2.7.8.2 Xassembler Assembler Option

	2.7.9 Mapped Assembler Options
	Table 2-17: Mapped Assembler Options

	2.7.10 Options for Linking
	Table 2-18: Linking Options
	2.7.10.1 llibrary
	2.7.10.2 nodefaultlibs
	2.7.10.3 nostartfiles
	2.7.10.4 nostdlib
	2.7.10.5 s: Remove Symbol Information
	2.7.10.6 u: Add Undefined symbol
	2.7.10.7 Wl option
	2.7.10.8 Xlinker option

	2.7.11 Mapped Linker Options
	Table 2-19: Mapped Linker Options

	2.7.12 Options for Directory Search
	Table 2-20: Directory Search Options
	2.7.12.1 Idirafter
	2.7.12.2 IMacro
	2.7.12.3 I: Specify include file search path
	2.7.12.4 Ldir
	2.7.12.5 nostdinc

	2.7.13 Options for Code Generation Conventions
	Table 2-21: Code Generation Convention Options
	2.7.13.1 -fshort-enums

	Chapter 3. C Language Features
	3.1 Introduction
	3.2 C Standard Compliance
	3.2.1 Common C Interface Standard
	3.2.2 Divergence from the C99 Standard
	3.2.2.1 Complex number support

	3.3 Device-Related Features
	3.3.1 Device Support
	3.3.2 Instruction Set Support
	3.3.3 Device Header Files
	3.3.4 Stacks
	3.3.5 Configuration Bit Access
	3.3.6 Signatures
	3.3.7 Using SFRs From C Code
	3.3.7.1 Special Register Issues

	3.4 Supported Data Types and Variables
	3.4.1 Identifiers
	3.4.2 Integer Data Types
	Table 3-1: Integer Data Types

	3.4.3 Boolean Types
	3.4.4 Floating-Point Data Types
	Table 3-2: Floating-Point Data Types
	Table 3-3: Floating-Point Formats
	Table 3-4: Floating-Point Format Example IEEE 754

	3.4.5 Structures and Unions
	3.4.5.1 Structure and Union Qualifiers
	3.4.5.2 Bit-Fields in Structures
	3.4.5.3 Anonymous Structures and Unions

	3.4.6 Pointer Types
	3.4.6.1 Combining Type Qualifiers and Pointers
	3.4.6.2 Data Pointers
	3.4.6.2.1 Pointers to Both Memory Spaces

	3.4.6.3 Function Pointers

	3.4.7 Constant Types and Formats
	3.4.7.1 Integral Constants
	Table 3-5: Radix Formats
	Table 3-6: Suffixes and Assigned Types

	3.4.7.2 Floating-Point Constant
	3.4.7.3 Character and String Constants

	3.4.8 Standard Type Qualifiers
	3.4.8.1 Const Type Qualifier
	3.4.8.2 Volatile Type Qualifier

	3.4.9 Special Type Qualifiers
	3.4.9.1 __memx Address Space Qualifier
	3.4.9.2 __flash
	3.4.9.3 __flashn

	3.4.10 Attributes
	3.4.10.1 absdata
	3.4.10.2 address
	3.4.10.3 aligned
	3.4.10.4 deprecated
	3.4.10.5 io
	3.4.10.6 io_low
	3.4.10.7 packed
	3.4.10.8 __persistent
	3.4.10.9 progmem
	3.4.10.10 __section
	3.4.10.11 unused
	3.4.10.12 weak

	3.5 Memory Allocation and Access
	3.5.1 Address Spaces
	3.5.2 Objects in Data Space Memory
	3.5.2.1 Static Storage Duration Objects
	3.5.2.1.1 Static Variables
	3.5.2.1.2 Object Size Limits
	3.5.2.1.3 Changing the Default Allocation

	3.5.2.2 Automatic Storage Duration Objects
	3.5.2.2.1 Object Size Limits
	3.5.2.2.2 Changing the Default Auto Variable Allocation

	3.5.3 Objects in Program Space
	3.5.3.1 Size Limitations of Program-memory Objects
	3.5.3.2 Changing the Default Allocation

	3.5.4 Absolute Variables
	3.5.4.1 Absolute Objects in Data Memory
	3.5.4.2 Absolute Objects in Program Memory

	3.5.5 Variables in EEPROM
	3.5.5.1 EEPROM Variables
	3.5.5.2 EEPROM Access Functions

	3.5.6 Variables in Registers
	3.5.7 Dynamic Memory Allocation
	3.5.7.1 Adjusting Allocation Function Behavior

	3.5.8 Memory Models

	3.6 Operators and Statements
	3.6.1 Integral Promotion
	3.6.2 Rotation
	3.6.3 Switch Statements

	3.7 Register Usage
	Table 3-7: Registers with Dedicated Use

	3.8 Functions
	3.8.1 Function Specifiers
	3.8.1.1 __Interrupt Specifier
	3.8.1.2 Inline Specifier
	3.8.1.3 __section Qualifier

	3.8.2 Function Attributes
	3.8.2.1 naked
	3.8.2.2 OS_main and OS_task
	3.8.2.3 weak

	3.8.3 External Functions
	3.8.4 Allocation of Executable Code
	3.8.5 Changing the Default Function Allocation
	3.8.6 Function Size Limits
	3.8.7 Function Parameters
	3.8.8 Function Return Values
	3.8.9 Calling Functions

	3.9 Interrupts
	3.9.1 Writing an Interrupt Service Routine
	3.9.2 Changing the Default Interrupt Function Allocation
	3.9.3 Specifying the Interrupt Vector
	3.9.4 Context Switching
	3.9.4.1 Context Saving on Interrupts
	3.9.4.2 Context Restoration

	3.9.5 Enabling Interrupts
	3.9.6 Accessing Objects From Interrupt Routines

	3.10 Main, Runtime Startup and Reset
	3.10.1 The main Function
	3.10.2 Runtime Startup Code
	Table 3-8: Runtime Startup Code Sections used Before main
	Table 3-9: Runtime Startup Code Sections used After main
	3.10.2.1 Initialization of Objects
	3.10.2.2 Clearing Objects

	3.10.3 The Powerup Routine

	3.11 Libraries
	3.11.1 Standard Libraries
	3.11.2 User-Defined Libraries
	3.11.3 Using Library Routines

	3.12 Mixing C and Assembly Code
	3.12.1 Integrating Assembly Language Modules
	3.12.2 In-line Assembly
	3.12.2.1 Input and Output Operands
	Table 3-10: Input and Output Operand Constraints
	Table 3-11: Instructions and Operand Constraints
	Table 3-12: Input and Output Constraint Modifiers

	3.12.2.2 Clobber Operand
	3.12.2.3 Assembly Macros

	3.12.3 Interaction between Assembly and C Code
	3.12.3.1 Equivalent Assembly Symbols
	3.12.3.2 Accessing Registers from Assembly Code

	3.13 Optimizations
	3.14 Preprocessing
	3.14.1 Preprocessor Directives
	Table 3-13: Preprocessor Directives
	3.14.1.1 Preprocessor Arithmetic

	3.14.2 Predefined Macros
	Table 3-14: Predefined Macros

	3.14.3 Pragma Directives

	3.15 Linking Programs
	3.15.1 Compiler-Generated Psects
	3.15.1.1 Program Space Sections
	3.15.1.2 Data Space Sections

	3.15.2 Changing and Linking the Allocated Section
	3.15.3 Linker Scripts
	Table 3-15: Linker script variants

	3.15.4 Replacing Library Modules

	Chapter 4. Utilities
	4.1 Introduction
	4.2 Librarian
	4.2.1 Using the Librarian
	Table 4-1: Librarian Command-line Options
	4.2.1.1 Examples

	4.3 Hexmate
	4.3.1 Hexmate Command Line Options
	Table 4-2: hexmate Command-line Options (Continued)
	4.3.1.1 specifications,filename.HEX
	4.3.1.2 + Prefix
	4.3.1.3 --EDF
	4.3.1.4 --EMAX
	4.3.1.5 --MSGDISABLE
	4.3.1.6 --SLA
	4.3.1.7 --VER
	4.3.1.8 -ADDRESSING
	4.3.1.9 -BREAK
	4.3.1.10 -CK
	Table 4-3: Hexmate Hash Algorithm Selection

	4.3.1.11 -FILL
	4.3.1.12 -FIND
	4.3.1.13 -FIND...,DELETE
	4.3.1.14 -FIND...,REPLACE
	4.3.1.15 -FORMAT
	Table 4-4: INHX Types Used in -FORMAT Option

	4.3.1.16 -HELP
	4.3.1.17 -LOGFILE
	4.3.1.18 -MASK
	4.3.1.19 -Ofile
	4.3.1.20 -SERIAL
	4.3.1.21 -SIZE
	4.3.1.22 -STRING
	4.3.1.23 -STRPACK

	4.3.2 Hash Functions
	4.3.3 Addition Algorithms
	4.3.4 Subtraction Algorithms
	4.3.5 Fletcher Algorithms
	4.3.6 CRC Algorithms

	4.4 Objdump

	Appendix A. Library Functions
	A.1 Introduction
	Table A-1: Declarations Provided by <alloca.h>
	Table A-2: Declarations Provided by <assert.h>
	Table A-3: Declarations Provided by <ctype.h>
	Table A-4: Declarations Provided by <errno.h>
	Table A-5: Declarations Provided by <float.h>
	Table A-6: Declarations Provided by C99 <inttypes.h>
	Table A-7: Declarations Provided by C99 <iso646.h>
	Table A-8: Declarations provided by <limits.h>
	Table A-9: Declarations defined by <math.h>
	Table A-10: Declarations Provided by <setjmp.h>
	Table A-11: Declarations Provided by <stdarg.h>
	Table A-12: Declarations Provided by C99 <stdbool.h>
	Table A-13: Declarations Provided by <stddef.h>
	Table A-14: Declarations provided by C99 <stdint.h>
	Table A-15: Declarations provided by <stdio.h>
	Table A-16: Declarations provided by <stdlib.h>
	Table A-17: Declarations provided by <string.h>
	Table A-18: Declarations provided by <time.h>
	Table A-19: Declarations provided by <xc.h>
	Table A-20: Declarations provided by <avr/cpufunc.h>
	Table A-21: Declarations provided by <avr/sfr_defs.h>
	Table A-22: Declarations provided by <avr/pgmspace.h>
	Table A-23: Declarations provided by <avr/io.h>
	Table A-24: Declarations provided by <avr/boot.h>
	Table A-25: Declarations provided by <avr/sleep.h>
	Table A-26: Builtin Declarations

	Appendix B. Implementation-Defined Behavior
	B.1 Introduction
	B.2 Overview
	B.3 Translation
	B.4 Environment
	B.5 Identifiers
	B.6 Characters
	B.7 Integers
	B.8 Floating-Point
	B.9 Arrays and Pointers
	B.10 Hints
	B.11 Structures, Unions, Enumerations, and Bit-Fields
	B.12 Qualifiers
	B.13 Pre-Processing Directives
	B.14 Library Functions
	B.15 Architecture

	Glossary
	Index
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

